New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > difeqri | GIF version |
Description: Inference from membership to difference. (Contributed by NM, 17-May-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
difeqri.1 | ⊢ ((x ∈ A ∧ ¬ x ∈ B) ↔ x ∈ C) |
Ref | Expression |
---|---|
difeqri | ⊢ (A ∖ B) = C |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3222 | . . 3 ⊢ (x ∈ (A ∖ B) ↔ (x ∈ A ∧ ¬ x ∈ B)) | |
2 | difeqri.1 | . . 3 ⊢ ((x ∈ A ∧ ¬ x ∈ B) ↔ x ∈ C) | |
3 | 1, 2 | bitri 240 | . 2 ⊢ (x ∈ (A ∖ B) ↔ x ∈ C) |
4 | 3 | eqriv 2350 | 1 ⊢ (A ∖ B) = C |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∖ cdif 3207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 |
This theorem is referenced by: difdif 3393 ddif 3399 dfss4 3490 difin 3493 difab 3524 |
Copyright terms: Public domain | W3C validator |