New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl5ibcom | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 19-Jun-2007.) |
Ref | Expression |
---|---|
syl5ib.1 | ⊢ (φ → ψ) |
syl5ib.2 | ⊢ (χ → (ψ ↔ θ)) |
Ref | Expression |
---|---|
syl5ibcom | ⊢ (φ → (χ → θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5ib.1 | . . 3 ⊢ (φ → ψ) | |
2 | syl5ib.2 | . . 3 ⊢ (χ → (ψ ↔ θ)) | |
3 | 1, 2 | syl5ib 210 | . 2 ⊢ (χ → (φ → θ)) |
4 | 3 | com12 27 | 1 ⊢ (φ → (χ → θ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: biimpcd 215 mob2 3016 rmob 3134 ltfintri 4466 ncfineleq 4477 tfinltfin 4501 tfinnn 4534 sfinltfin 4535 vfinncvntnn 4548 vfinspsslem1 4550 phi11lem1 4595 phialllem1 4616 xp11 5056 tz6.12c 5347 weds 5938 erth 5968 ectocld 5991 ecoptocl 5996 mapsn 6026 fndmeng 6046 enmap1lem3 6071 enprmaplem6 6081 ltlenlec 6207 nchoicelem9 6297 |
Copyright terms: Public domain | W3C validator |