NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl5ibcom GIF version

Theorem syl5ibcom 211
Description: A mixed syllogism inference. (Contributed by NM, 19-Jun-2007.)
Hypotheses
Ref Expression
syl5ib.1 (φψ)
syl5ib.2 (χ → (ψθ))
Assertion
Ref Expression
syl5ibcom (φ → (χθ))

Proof of Theorem syl5ibcom
StepHypRef Expression
1 syl5ib.1 . . 3 (φψ)
2 syl5ib.2 . . 3 (χ → (ψθ))
31, 2syl5ib 210 . 2 (χ → (φθ))
43com12 27 1 (φ → (χθ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  biimpcd  215  mob2  3017  rmob  3135  ltfintri  4467  ncfineleq  4478  tfinltfin  4502  tfinnn  4535  sfinltfin  4536  vfinncvntnn  4549  vfinspsslem1  4551  phi11lem1  4596  phialllem1  4617  xp11  5057  tz6.12c  5348  weds  5939  erth  5969  ectocld  5992  ecoptocl  5997  mapsn  6027  fndmeng  6047  enmap1lem3  6072  enprmaplem6  6082  ltlenlec  6208  nchoicelem9  6298
  Copyright terms: Public domain W3C validator