New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rexlimdva | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 20-Jan-2007.) |
Ref | Expression |
---|---|
rexlimdva.1 | ⊢ ((φ ∧ x ∈ A) → (ψ → χ)) |
Ref | Expression |
---|---|
rexlimdva | ⊢ (φ → (∃x ∈ A ψ → χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdva.1 | . . 3 ⊢ ((φ ∧ x ∈ A) → (ψ → χ)) | |
2 | 1 | ex 423 | . 2 ⊢ (φ → (x ∈ A → (ψ → χ))) |
3 | 2 | rexlimdv 2738 | 1 ⊢ (φ → (∃x ∈ A ψ → χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∈ wcel 1710 ∃wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-ral 2620 df-rex 2621 |
This theorem is referenced by: rexlimdvaa 2740 rexlimivv 2744 rexlimdvv 2745 pw1disj 4168 leltfintr 4459 ncfinlower 4484 tfin11 4494 tfinpw1 4495 nnpweq 4524 sfin112 4530 sfindbl 4531 vfinspss 4552 vfinspeqtncv 4554 phi11lem1 4596 foco2 5427 f1elima 5475 ectocld 5992 ncssfin 6152 nntccl 6171 dflec2 6211 leaddc1 6215 leconnnc 6219 tlecg 6231 letc 6232 ce2le 6234 ce0lenc1 6240 nclenn 6250 lemuc1 6254 lecadd2 6267 ncslesuc 6268 nnc3n3p1 6279 nchoicelem17 6306 nchoicelem19 6308 nchoice 6309 dmfrec 6317 fnfreclem3 6320 |
Copyright terms: Public domain | W3C validator |