New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elpwg | GIF version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. See also elpw2g in set.mm. (Contributed by NM, 6-Aug-2000.) |
Ref | Expression |
---|---|
elpwg | ⊢ (A ∈ V → (A ∈ ℘B ↔ A ⊆ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2413 | . 2 ⊢ (x = A → (x ∈ ℘B ↔ A ∈ ℘B)) | |
2 | sseq1 3293 | . 2 ⊢ (x = A → (x ⊆ B ↔ A ⊆ B)) | |
3 | vex 2863 | . . 3 ⊢ x ∈ V | |
4 | 3 | elpw 3729 | . 2 ⊢ (x ∈ ℘B ↔ x ⊆ B) |
5 | 1, 2, 4 | vtoclbg 2916 | 1 ⊢ (A ∈ V → (A ∈ ℘B ↔ A ⊆ B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∈ wcel 1710 ⊆ wss 3258 ℘cpw 3723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-pw 3725 |
This theorem is referenced by: elpwi 3731 pwidg 3735 elpmg 6014 nenpw1pwlem2 6086 |
Copyright terms: Public domain | W3C validator |