NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elpwg GIF version

Theorem elpwg 3730
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. See also elpw2g in set.mm. (Contributed by NM, 6-Aug-2000.)
Assertion
Ref Expression
elpwg (A V → (A BA B))

Proof of Theorem elpwg
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 eleq1 2413 . 2 (x = A → (x BA B))
2 sseq1 3293 . 2 (x = A → (x BA B))
3 vex 2863 . . 3 x V
43elpw 3729 . 2 (x Bx B)
51, 2, 4vtoclbg 2916 1 (A V → (A BA B))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wcel 1710   wss 3258  cpw 3723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-pw 3725
This theorem is referenced by:  elpwi  3731  pwidg  3735  elpmg  6014  nenpw1pwlem2  6086
  Copyright terms: Public domain W3C validator