New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elpw | GIF version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
elpw.1 | ⊢ A ∈ V |
Ref | Expression |
---|---|
elpw | ⊢ (A ∈ ℘B ↔ A ⊆ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw.1 | . 2 ⊢ A ∈ V | |
2 | sseq1 3293 | . 2 ⊢ (x = A → (x ⊆ B ↔ A ⊆ B)) | |
3 | df-pw 3725 | . 2 ⊢ ℘B = {x ∣ x ⊆ B} | |
4 | 1, 2, 3 | elab2 2989 | 1 ⊢ (A ∈ ℘B ↔ A ⊆ B) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∈ wcel 1710 Vcvv 2860 ⊆ wss 3258 ℘cpw 3723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-pw 3725 |
This theorem is referenced by: elpwg 3730 prsspw 3879 pwpr 3884 pwtp 3885 pwv 3887 sspwuni 4052 iinpw 4055 iunpwss 4056 snelpwg 4115 snelpwi 4117 unipw 4118 sspwb 4119 pwadjoin 4120 elpw1 4145 dfpw2 4328 eqpw1relk 4480 nnadjoinpw 4522 tfinnnlem1 4534 pw1fnf1o 5856 mapexi 6004 mapval2 6019 mapsspm 6022 mapsspw 6023 enpw1pw 6076 enprmaplem5 6081 enprmaplem6 6082 |
Copyright terms: Public domain | W3C validator |