NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elpw GIF version

Theorem elpw 3729
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.)
Hypothesis
Ref Expression
elpw.1 A V
Assertion
Ref Expression
elpw (A BA B)

Proof of Theorem elpw
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 elpw.1 . 2 A V
2 sseq1 3293 . 2 (x = A → (x BA B))
3 df-pw 3725 . 2 B = {x x B}
41, 2, 3elab2 2989 1 (A BA B)
Colors of variables: wff setvar class
Syntax hints:  wb 176   wcel 1710  Vcvv 2860   wss 3258  cpw 3723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-pw 3725
This theorem is referenced by:  elpwg  3730  prsspw  3879  pwpr  3884  pwtp  3885  pwv  3887  sspwuni  4052  iinpw  4055  iunpwss  4056  snelpwg  4115  snelpwi  4117  unipw  4118  sspwb  4119  pwadjoin  4120  elpw1  4145  dfpw2  4328  eqpw1relk  4480  nnadjoinpw  4522  tfinnnlem1  4534  pw1fnf1o  5856  mapexi  6004  mapval2  6019  mapsspm  6022  mapsspw  6023  enpw1pw  6076  enprmaplem5  6081  enprmaplem6  6082
  Copyright terms: Public domain W3C validator