NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ssunieq GIF version

Theorem ssunieq 3925
Description: Relationship implying union. (Contributed by NM, 10-Nov-1999.)
Assertion
Ref Expression
ssunieq ((A B x B x A) → A = B)
Distinct variable groups:   x,A   x,B

Proof of Theorem ssunieq
StepHypRef Expression
1 elssuni 3920 . . 3 (A BA B)
2 unissb 3922 . . . 4 (B Ax B x A)
32biimpri 197 . . 3 (x B x AB A)
41, 3anim12i 549 . 2 ((A B x B x A) → (A B B A))
5 eqss 3288 . 2 (A = B ↔ (A B B A))
64, 5sylibr 203 1 ((A B x B x A) → A = B)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   = wceq 1642   wcel 1710  wral 2615   wss 3258  cuni 3892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-uni 3893
This theorem is referenced by:  unimax  3926
  Copyright terms: Public domain W3C validator