New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfcleq | GIF version |
Description: The same as df-cleq 2346 with the hypothesis removed using the Axiom of Extensionality ax-ext 2334. (Contributed by NM, 15-Sep-1993.) |
Ref | Expression |
---|---|
dfcleq | ⊢ (A = B ↔ ∀x(x ∈ A ↔ x ∈ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-ext 2334 | . 2 ⊢ (∀x(x ∈ y ↔ x ∈ z) → y = z) | |
2 | 1 | df-cleq 2346 | 1 ⊢ (A = B ↔ ∀x(x ∈ A ↔ x ∈ B)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∀wal 1540 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-ext 2334 |
This theorem depends on definitions: df-cleq 2346 |
This theorem is referenced by: cvjust 2348 eqriv 2350 eqrdv 2351 eqcom 2355 eqeq1 2359 eleq2 2414 cleqh 2450 abbi 2464 nfeq 2497 nfeqd 2504 cleqf 2514 dfss2 3263 eqss 3288 ssequn1 3434 necompl 3545 eqv 3566 disj3 3596 undif4 3608 axprimlem1 4089 axprimlem2 4090 ninexg 4098 1cex 4143 pw111 4171 opkelimagekg 4272 xpkvexg 4286 p6exg 4291 dfaddc2 4382 nnsucelrlem1 4425 ltfinex 4465 eqtfinrelk 4487 evenfinex 4504 oddfinex 4505 evenodddisjlem1 4516 nnadjoinlem1 4520 dfop2lem1 4574 eqop 4612 setconslem2 4733 dfswap2 4742 brimage 5794 releqel 5808 releqmpt2 5810 qsexg 5983 |
Copyright terms: Public domain | W3C validator |