New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elsn | GIF version |
Description: There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
elsn | ⊢ (x ∈ {A} ↔ x = A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sn 3742 | . 2 ⊢ {A} = {x ∣ x = A} | |
2 | 1 | abeq2i 2461 | 1 ⊢ (x ∈ {A} ↔ x = A) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 = wceq 1642 ∈ wcel 1710 {csn 3738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-sn 3742 |
This theorem is referenced by: dfpr2 3750 ralsns 3764 rexsns 3765 disjsn 3787 snprc 3789 euabsn2 3792 snss 3839 difprsnss 3847 pwpw0 3856 eqsn 3868 snsspw 3878 pwsnALT 3883 dfnfc2 3910 uni0b 3917 uni0c 3918 axprimlem1 4089 pwadjoin 4120 pw10 4162 pw1sn 4166 eqpw1uni 4331 nnsucelrlem2 4426 opeliunxp 4821 dmsnopg 5067 nfunsn 5354 fsn 5433 fconstfv 5457 foundex 5915 el2c 6192 csucex 6260 nmembers1lem3 6271 nchoicelem6 6295 |
Copyright terms: Public domain | W3C validator |