New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ineq12i | GIF version |
Description: Equality inference for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
ineq1i.1 | ⊢ A = B |
ineq12i.2 | ⊢ C = D |
Ref | Expression |
---|---|
ineq12i | ⊢ (A ∩ C) = (B ∩ D) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1i.1 | . 2 ⊢ A = B | |
2 | ineq12i.2 | . 2 ⊢ C = D | |
3 | ineq12 3453 | . 2 ⊢ ((A = B ∧ C = D) → (A ∩ C) = (B ∩ D)) | |
4 | 1, 2, 3 | mp2an 653 | 1 ⊢ (A ∩ C) = (B ∩ D) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ∩ cin 3209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 |
This theorem is referenced by: undir 3505 difundi 3508 difindir 3511 inrab 3528 inrab2 3529 iinun 3549 dfif4 3674 dfif5 3675 evenodddisj 4517 inxp 4864 resindi 4984 resindir 4985 rnin 5038 cnvpprod 5842 pmex 6006 sbthlem1 6204 nmembers1lem1 6269 |
Copyright terms: Public domain | W3C validator |