| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > in0 | GIF version | ||
| Description: The intersection of a class with the empty set is the empty set. Theorem 16 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| in0 | ⊢ (A ∩ ∅) = ∅ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | noel 3555 | . . . 4 ⊢ ¬ x ∈ ∅ | |
| 2 | 1 | bianfi 891 | . . 3 ⊢ (x ∈ ∅ ↔ (x ∈ A ∧ x ∈ ∅)) | 
| 3 | 2 | bicomi 193 | . 2 ⊢ ((x ∈ A ∧ x ∈ ∅) ↔ x ∈ ∅) | 
| 4 | 3 | ineqri 3450 | 1 ⊢ (A ∩ ∅) = ∅ | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∩ cin 3209 ∅c0 3551 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-nul 3552 | 
| This theorem is referenced by: inindif 4076 addcid1 4406 res0 4978 | 
| Copyright terms: Public domain | W3C validator |