New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > un0 | GIF version |
Description: The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
un0 | ⊢ (A ∪ ∅) = A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3555 | . . . 4 ⊢ ¬ x ∈ ∅ | |
2 | 1 | biorfi 396 | . . 3 ⊢ (x ∈ A ↔ (x ∈ A ∨ x ∈ ∅)) |
3 | 2 | bicomi 193 | . 2 ⊢ ((x ∈ A ∨ x ∈ ∅) ↔ x ∈ A) |
4 | 3 | uneqri 3407 | 1 ⊢ (A ∪ ∅) = A |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 357 = wceq 1642 ∈ wcel 1710 ∪ cun 3208 ∅c0 3551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-nul 3552 |
This theorem is referenced by: un00 3587 disjssun 3609 difun2 3630 difdifdir 3638 diftpsn3 3850 sspr 3870 sstp 3871 iununi 4051 prprc2 4123 addcid1 4406 nnsucelrlem3 4427 fvun1 5380 fvunsn 5445 fvsnun1 5448 fvsnun2 5449 sbthlem1 6204 |
Copyright terms: Public domain | W3C validator |