Step | Hyp | Ref
| Expression |
1 | | vex 2863 |
. . . . 5
⊢ x ∈
V |
2 | 1 | eluni1 4174 |
. . . 4
⊢ (x ∈
⋃1⋃1ran ((( Ins2
SI ∼ (( Ins3
S ⊕ Ins2
SI (( ≤c ↾ ( ≤c “
{1c})) ↾ Nn )) “ 1c) ∩ (V ×
( SI ◡TcFn
∘ ◡TcFn))) ∩ Ins3 S ) “
1c) ↔ {x} ∈ ⋃1ran ((( Ins2 SI ∼ (( Ins3 S ⊕ Ins2 SI ((
≤c ↾ ( ≤c
“ {1c})) ↾ Nn )) “ 1c) ∩ (V ×
( SI ◡TcFn
∘ ◡TcFn))) ∩ Ins3 S ) “
1c)) |
3 | | snex 4112 |
. . . . 5
⊢ {x} ∈
V |
4 | 3 | eluni1 4174 |
. . . 4
⊢ ({x} ∈
⋃1ran ((( Ins2 SI ∼ (( Ins3 S ⊕ Ins2 SI (( ≤c ↾ ( ≤c “
{1c})) ↾ Nn )) “ 1c) ∩ (V ×
( SI ◡TcFn
∘ ◡TcFn))) ∩ Ins3 S ) “
1c) ↔ {{x}} ∈ ran ((( Ins2 SI ∼ (( Ins3 S ⊕ Ins2 SI (( ≤c ↾ ( ≤c “
{1c})) ↾ Nn )) “ 1c) ∩ (V ×
( SI ◡TcFn
∘ ◡TcFn))) ∩ Ins3 S ) “
1c)) |
5 | | elrn2 4898 |
. . . . . 6
⊢ ({{x}} ∈ ran (((
Ins2 SI ∼ ((
Ins3 S ⊕
Ins2 SI ((
≤c ↾ ( ≤c
“ {1c})) ↾ Nn )) “ 1c) ∩ (V ×
( SI ◡TcFn
∘ ◡TcFn))) ∩ Ins3 S ) “
1c) ↔ ∃q〈q, {{x}}〉 ∈ ((( Ins2 SI ∼ (( Ins3 S ⊕ Ins2 SI ((
≤c ↾ ( ≤c
“ {1c})) ↾ Nn )) “ 1c) ∩ (V ×
( SI ◡TcFn
∘ ◡TcFn))) ∩ Ins3 S ) “
1c)) |
6 | | elima1c 4948 |
. . . . . . . 8
⊢ (〈q, {{x}}〉 ∈ ((( Ins2 SI ∼ (( Ins3 S ⊕ Ins2 SI (( ≤c ↾ ( ≤c “
{1c})) ↾ Nn )) “ 1c) ∩ (V ×
( SI ◡TcFn
∘ ◡TcFn))) ∩ Ins3 S ) “
1c) ↔ ∃p〈{p}, 〈q, {{x}}〉〉 ∈ (( Ins2 SI ∼ (( Ins3 S ⊕ Ins2 SI (( ≤c ↾ ( ≤c “
{1c})) ↾ Nn )) “ 1c) ∩ (V ×
( SI ◡TcFn
∘ ◡TcFn))) ∩ Ins3 S )) |
7 | | elin 3220 |
. . . . . . . . . . . 12
⊢ (〈{p}, 〈q, {{x}}〉〉 ∈ ( Ins2 SI ∼ (( Ins3 S ⊕ Ins2 SI ((
≤c ↾ ( ≤c
“ {1c})) ↾ Nn )) “ 1c) ∩ (V ×
( SI ◡TcFn
∘ ◡TcFn))) ↔ (〈{p}, 〈q, {{x}}〉〉 ∈ Ins2 SI ∼ (( Ins3 S ⊕ Ins2 SI ((
≤c ↾ ( ≤c
“ {1c})) ↾ Nn )) “ 1c) ∧ 〈{p}, 〈q, {{x}}〉〉 ∈ (V × ( SI
◡TcFn ∘ ◡TcFn)))) |
8 | | vex 2863 |
. . . . . . . . . . . . . . 15
⊢ q ∈
V |
9 | 8 | otelins2 5792 |
. . . . . . . . . . . . . 14
⊢ (〈{p}, 〈q, {{x}}〉〉 ∈ Ins2 SI ∼ (( Ins3 S ⊕ Ins2 SI ((
≤c ↾ ( ≤c
“ {1c})) ↾ Nn )) “ 1c) ↔ 〈{p},
{{x}}〉
∈ SI ∼ ((
Ins3 S ⊕
Ins2 SI ((
≤c ↾ ( ≤c
“ {1c})) ↾ Nn )) “ 1c)) |
10 | | vex 2863 |
. . . . . . . . . . . . . . 15
⊢ p ∈
V |
11 | 10, 3 | opsnelsi 5775 |
. . . . . . . . . . . . . 14
⊢ (〈{p},
{{x}}〉
∈ SI ∼ ((
Ins3 S ⊕
Ins2 SI ((
≤c ↾ ( ≤c
“ {1c})) ↾ Nn )) “ 1c) ↔ 〈p, {x}〉 ∈ ∼ (( Ins3 S ⊕ Ins2 SI (( ≤c ↾ ( ≤c “
{1c})) ↾ Nn )) “ 1c)) |
12 | | opelres 4951 |
. . . . . . . . . . . . . . . . 17
⊢ (〈y, x〉 ∈ (( ≤c ↾ ( ≤c “
{1c})) ↾ Nn ) ↔ (〈y, x〉 ∈ (
≤c ↾ ( ≤c
“ {1c})) ∧ y ∈ Nn )) |
13 | | ancom 437 |
. . . . . . . . . . . . . . . . 17
⊢ ((〈y, x〉 ∈ ( ≤c ↾ ( ≤c “
{1c})) ∧ y ∈ Nn ) ↔ (y ∈ Nn ∧ 〈y, x〉 ∈ (
≤c ↾ ( ≤c
“ {1c})))) |
14 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . 19
⊢ (y( ≤c ↾ ( ≤c “
{1c}))x ↔ 〈y, x〉 ∈ ( ≤c ↾ ( ≤c “
{1c}))) |
15 | | brres 4950 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (y( ≤c ↾ ( ≤c “
{1c}))x ↔ (y ≤c x ∧ y ∈ (
≤c “ {1c}))) |
16 | | ancom 437 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((y ≤c x ∧ y ∈ (
≤c “ {1c})) ↔ (y ∈ (
≤c “ {1c}) ∧ y
≤c x)) |
17 | | elimasn 5020 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (y ∈ (
≤c “ {1c}) ↔ 〈1c, y〉 ∈ ≤c ) |
18 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(1c ≤c y ↔ 〈1c, y〉 ∈ ≤c ) |
19 | 17, 18 | bitr4i 243 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (y ∈ (
≤c “ {1c}) ↔ 1c
≤c y) |
20 | 19 | anbi1i 676 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((y ∈ (
≤c “ {1c}) ∧ y
≤c x) ↔
(1c ≤c y
∧ y
≤c x)) |
21 | 15, 16, 20 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . 19
⊢ (y( ≤c ↾ ( ≤c “
{1c}))x ↔
(1c ≤c y
∧ y
≤c x)) |
22 | 14, 21 | bitr3i 242 |
. . . . . . . . . . . . . . . . . 18
⊢ (〈y, x〉 ∈ ( ≤c ↾ ( ≤c “
{1c})) ↔ (1c ≤c y ∧ y ≤c x)) |
23 | 22 | anbi2i 675 |
. . . . . . . . . . . . . . . . 17
⊢ ((y ∈ Nn ∧ 〈y, x〉 ∈ ( ≤c ↾ ( ≤c “
{1c}))) ↔ (y ∈ Nn ∧ (1c ≤c y ∧ y ≤c x))) |
24 | 12, 13, 23 | 3bitri 262 |
. . . . . . . . . . . . . . . 16
⊢ (〈y, x〉 ∈ (( ≤c ↾ ( ≤c “
{1c})) ↾ Nn ) ↔ (y ∈ Nn ∧ (1c ≤c y ∧ y ≤c x))) |
25 | | vex 2863 |
. . . . . . . . . . . . . . . . 17
⊢ y ∈
V |
26 | 25, 1 | opsnelsi 5775 |
. . . . . . . . . . . . . . . 16
⊢ (〈{y}, {x}〉 ∈ SI ((
≤c ↾ ( ≤c
“ {1c})) ↾ Nn ) ↔ 〈y, x〉 ∈ ((
≤c ↾ ( ≤c
“ {1c})) ↾ Nn )) |
27 | | breq2 4644 |
. . . . . . . . . . . . . . . . . 18
⊢ (m = y →
(1c ≤c m
↔ 1c ≤c y)) |
28 | | breq1 4643 |
. . . . . . . . . . . . . . . . . 18
⊢ (m = y →
(m ≤c x ↔ y
≤c x)) |
29 | 27, 28 | anbi12d 691 |
. . . . . . . . . . . . . . . . 17
⊢ (m = y →
((1c ≤c m
∧ m
≤c x) ↔
(1c ≤c y
∧ y
≤c x))) |
30 | 29 | elrab 2995 |
. . . . . . . . . . . . . . . 16
⊢ (y ∈ {m ∈ Nn ∣
(1c ≤c m
∧ m
≤c x)} ↔ (y ∈ Nn ∧
(1c ≤c y
∧ y
≤c x))) |
31 | 24, 26, 30 | 3bitr4i 268 |
. . . . . . . . . . . . . . 15
⊢ (〈{y}, {x}〉 ∈ SI ((
≤c ↾ ( ≤c
“ {1c})) ↾ Nn ) ↔ y ∈ {m ∈ Nn ∣ (1c ≤c m ∧ m ≤c x)}) |
32 | 3, 31 | releqel 5808 |
. . . . . . . . . . . . . 14
⊢ (〈p, {x}〉 ∈ ∼ (( Ins3 S ⊕ Ins2 SI (( ≤c ↾ ( ≤c “
{1c})) ↾ Nn )) “ 1c) ↔ p = {m ∈ Nn ∣ (1c ≤c m ∧ m ≤c x)}) |
33 | 9, 11, 32 | 3bitri 262 |
. . . . . . . . . . . . 13
⊢ (〈{p}, 〈q, {{x}}〉〉 ∈ Ins2 SI ∼ (( Ins3 S ⊕ Ins2 SI ((
≤c ↾ ( ≤c
“ {1c})) ↾ Nn )) “ 1c) ↔ p = {m ∈ Nn ∣ (1c ≤c m ∧ m ≤c x)}) |
34 | | snex 4112 |
. . . . . . . . . . . . . . 15
⊢ {p} ∈
V |
35 | | opelxp 4812 |
. . . . . . . . . . . . . . 15
⊢ (〈{p}, 〈q, {{x}}〉〉 ∈ (V ×
( SI ◡TcFn
∘ ◡TcFn)) ↔ ({p} ∈ V ∧ 〈q, {{x}}〉 ∈ ( SI ◡TcFn ∘ ◡TcFn))) |
36 | 34, 35 | mpbiran 884 |
. . . . . . . . . . . . . 14
⊢ (〈{p}, 〈q, {{x}}〉〉 ∈ (V ×
( SI ◡TcFn
∘ ◡TcFn)) ↔ 〈q, {{x}}〉 ∈ ( SI ◡TcFn ∘
◡TcFn)) |
37 | | opelco 4885 |
. . . . . . . . . . . . . 14
⊢ (〈q, {{x}}〉 ∈ ( SI ◡TcFn ∘
◡TcFn) ↔ ∃t(q◡TcFnt
∧ t SI ◡TcFn{{x}})) |
38 | 3 | brsnsi2 5777 |
. . . . . . . . . . . . . . . . . 18
⊢ (t SI ◡TcFn{{x}} ↔ ∃p(t = {p} ∧ p◡TcFn{x})) |
39 | 38 | anbi2i 675 |
. . . . . . . . . . . . . . . . 17
⊢ ((q◡TcFnt
∧ t SI ◡TcFn{{x}}) ↔ (q◡TcFnt
∧ ∃p(t = {p} ∧ p◡TcFn{x}))) |
40 | | 19.42v 1905 |
. . . . . . . . . . . . . . . . 17
⊢ (∃p(q◡TcFnt
∧ (t =
{p} ∧
p◡TcFn{x})) ↔ (q◡TcFnt
∧ ∃p(t = {p} ∧ p◡TcFn{x}))) |
41 | 39, 40 | bitr4i 243 |
. . . . . . . . . . . . . . . 16
⊢ ((q◡TcFnt
∧ t SI ◡TcFn{{x}}) ↔ ∃p(q◡TcFnt
∧ (t =
{p} ∧
p◡TcFn{x}))) |
42 | 41 | exbii 1582 |
. . . . . . . . . . . . . . 15
⊢ (∃t(q◡TcFnt
∧ t SI ◡TcFn{{x}}) ↔ ∃t∃p(q◡TcFnt
∧ (t =
{p} ∧
p◡TcFn{x}))) |
43 | | excom 1741 |
. . . . . . . . . . . . . . 15
⊢ (∃t∃p(q◡TcFnt
∧ (t =
{p} ∧
p◡TcFn{x})) ↔ ∃p∃t(q◡TcFnt
∧ (t =
{p} ∧
p◡TcFn{x}))) |
44 | | an12 772 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((q◡TcFnt
∧ (t =
{p} ∧
p◡TcFn{x})) ↔ (t =
{p} ∧
(q◡TcFnt
∧ p◡TcFn{x}))) |
45 | 44 | exbii 1582 |
. . . . . . . . . . . . . . . . . 18
⊢ (∃t(q◡TcFnt
∧ (t =
{p} ∧
p◡TcFn{x})) ↔ ∃t(t = {p} ∧ (q◡TcFnt
∧ p◡TcFn{x}))) |
46 | | breq2 4644 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (t = {p} →
(q◡TcFnt
↔ q◡TcFn{p})) |
47 | 46 | anbi1d 685 |
. . . . . . . . . . . . . . . . . . 19
⊢ (t = {p} →
((q◡TcFnt
∧ p◡TcFn{x})
↔ (q◡TcFn{p}
∧ p◡TcFn{x}))) |
48 | 34, 47 | ceqsexv 2895 |
. . . . . . . . . . . . . . . . . 18
⊢ (∃t(t = {p} ∧ (q◡TcFnt
∧ p◡TcFn{x})) ↔ (q◡TcFn{p}
∧ p◡TcFn{x})) |
49 | 45, 48 | bitri 240 |
. . . . . . . . . . . . . . . . 17
⊢ (∃t(q◡TcFnt
∧ (t =
{p} ∧
p◡TcFn{x})) ↔ (q◡TcFn{p}
∧ p◡TcFn{x})) |
50 | 49 | exbii 1582 |
. . . . . . . . . . . . . . . 16
⊢ (∃p∃t(q◡TcFnt
∧ (t =
{p} ∧
p◡TcFn{x})) ↔ ∃p(q◡TcFn{p}
∧ p◡TcFn{x})) |
51 | | brcnv 4893 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (q◡TcFn{p}
↔ {p}TcFnq) |
52 | 10 | brtcfn 6247 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({p}TcFnq ↔
q = Tc p) |
53 | 51, 52 | bitri 240 |
. . . . . . . . . . . . . . . . . . 19
⊢ (q◡TcFn{p}
↔ q = Tc p) |
54 | | brcnv 4893 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (p◡TcFn{x}
↔ {x}TcFnp) |
55 | 1 | brtcfn 6247 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({x}TcFnp ↔
p = Tc x) |
56 | 54, 55 | bitri 240 |
. . . . . . . . . . . . . . . . . . 19
⊢ (p◡TcFn{x}
↔ p = Tc x) |
57 | 53, 56 | anbi12i 678 |
. . . . . . . . . . . . . . . . . 18
⊢ ((q◡TcFn{p}
∧ p◡TcFn{x})
↔ (q = Tc p
∧ p =
Tc x)) |
58 | | ancom 437 |
. . . . . . . . . . . . . . . . . 18
⊢ ((q = Tc
p ∧
p = Tc x)
↔ (p = Tc x
∧ q =
Tc p)) |
59 | 57, 58 | bitri 240 |
. . . . . . . . . . . . . . . . 17
⊢ ((q◡TcFn{p}
∧ p◡TcFn{x})
↔ (p = Tc x
∧ q =
Tc p)) |
60 | 59 | exbii 1582 |
. . . . . . . . . . . . . . . 16
⊢ (∃p(q◡TcFn{p}
∧ p◡TcFn{x})
↔ ∃p(p = Tc x
∧ q =
Tc p)) |
61 | | tcex 6158 |
. . . . . . . . . . . . . . . . 17
⊢ Tc x
∈ V |
62 | | tceq 6159 |
. . . . . . . . . . . . . . . . . 18
⊢ (p = Tc
x → Tc p =
Tc Tc x) |
63 | 62 | eqeq2d 2364 |
. . . . . . . . . . . . . . . . 17
⊢ (p = Tc
x → (q = Tc
p ↔ q = Tc Tc x)) |
64 | 61, 63 | ceqsexv 2895 |
. . . . . . . . . . . . . . . 16
⊢ (∃p(p = Tc
x ∧
q = Tc p)
↔ q = Tc Tc
x) |
65 | 50, 60, 64 | 3bitri 262 |
. . . . . . . . . . . . . . 15
⊢ (∃p∃t(q◡TcFnt
∧ (t =
{p} ∧
p◡TcFn{x})) ↔ q =
Tc Tc x) |
66 | 42, 43, 65 | 3bitri 262 |
. . . . . . . . . . . . . 14
⊢ (∃t(q◡TcFnt
∧ t SI ◡TcFn{{x}}) ↔ q =
Tc Tc x) |
67 | 36, 37, 66 | 3bitri 262 |
. . . . . . . . . . . . 13
⊢ (〈{p}, 〈q, {{x}}〉〉 ∈ (V ×
( SI ◡TcFn
∘ ◡TcFn)) ↔ q = Tc Tc x) |
68 | 33, 67 | anbi12i 678 |
. . . . . . . . . . . 12
⊢ ((〈{p}, 〈q, {{x}}〉〉 ∈ Ins2 SI ∼ (( Ins3 S ⊕ Ins2 SI ((
≤c ↾ ( ≤c
“ {1c})) ↾ Nn )) “ 1c) ∧ 〈{p}, 〈q, {{x}}〉〉 ∈ (V × ( SI
◡TcFn ∘ ◡TcFn)))
↔ (p = {m ∈ Nn ∣
(1c ≤c m
∧ m
≤c x)} ∧ q = Tc Tc
x)) |
69 | 7, 68 | bitri 240 |
. . . . . . . . . . 11
⊢ (〈{p}, 〈q, {{x}}〉〉 ∈ ( Ins2 SI ∼ (( Ins3 S ⊕ Ins2 SI ((
≤c ↾ ( ≤c
“ {1c})) ↾ Nn )) “ 1c) ∩ (V ×
( SI ◡TcFn
∘ ◡TcFn))) ↔ (p = {m ∈ Nn ∣ (1c ≤c m ∧ m ≤c x)} ∧ q = Tc Tc x)) |
70 | | snex 4112 |
. . . . . . . . . . . . 13
⊢ {{x}} ∈
V |
71 | 70 | otelins3 5793 |
. . . . . . . . . . . 12
⊢ (〈{p}, 〈q, {{x}}〉〉 ∈ Ins3 S ↔ 〈{p}, q〉 ∈ S
) |
72 | 10, 8 | opelssetsn 4761 |
. . . . . . . . . . . 12
⊢ (〈{p}, q〉 ∈ S ↔ p ∈ q) |
73 | 71, 72 | bitri 240 |
. . . . . . . . . . 11
⊢ (〈{p}, 〈q, {{x}}〉〉 ∈ Ins3 S ↔ p ∈ q) |
74 | 69, 73 | anbi12i 678 |
. . . . . . . . . 10
⊢ ((〈{p}, 〈q, {{x}}〉〉 ∈ ( Ins2 SI ∼ (( Ins3 S ⊕ Ins2 SI ((
≤c ↾ ( ≤c
“ {1c})) ↾ Nn )) “ 1c) ∩ (V ×
( SI ◡TcFn
∘ ◡TcFn))) ∧
〈{p},
〈q,
{{x}}〉〉 ∈ Ins3 S ) ↔ ((p =
{m ∈
Nn ∣
(1c ≤c m
∧ m
≤c x)} ∧ q = Tc Tc
x) ∧
p ∈
q)) |
75 | | elin 3220 |
. . . . . . . . . 10
⊢ (〈{p}, 〈q, {{x}}〉〉 ∈ (( Ins2 SI ∼ (( Ins3 S ⊕ Ins2 SI ((
≤c ↾ ( ≤c
“ {1c})) ↾ Nn )) “ 1c) ∩ (V ×
( SI ◡TcFn
∘ ◡TcFn))) ∩ Ins3 S ) ↔ (〈{p}, 〈q, {{x}}〉〉 ∈ ( Ins2 SI ∼ (( Ins3 S ⊕ Ins2 SI ((
≤c ↾ ( ≤c
“ {1c})) ↾ Nn )) “ 1c) ∩ (V ×
( SI ◡TcFn
∘ ◡TcFn))) ∧
〈{p},
〈q,
{{x}}〉〉 ∈ Ins3 S )) |
76 | | df-3an 936 |
. . . . . . . . . 10
⊢ ((p = {m ∈ Nn ∣ (1c ≤c m ∧ m ≤c x)} ∧ q = Tc Tc x
∧ p ∈ q) ↔
((p = {m ∈ Nn ∣
(1c ≤c m
∧ m
≤c x)} ∧ q = Tc Tc
x) ∧
p ∈
q)) |
77 | 74, 75, 76 | 3bitr4i 268 |
. . . . . . . . 9
⊢ (〈{p}, 〈q, {{x}}〉〉 ∈ (( Ins2 SI ∼ (( Ins3 S ⊕ Ins2 SI ((
≤c ↾ ( ≤c
“ {1c})) ↾ Nn )) “ 1c) ∩ (V ×
( SI ◡TcFn
∘ ◡TcFn))) ∩ Ins3 S ) ↔ (p = {m ∈ Nn ∣ (1c ≤c m ∧ m ≤c x)} ∧ q = Tc Tc x
∧ p ∈ q)) |
78 | 77 | exbii 1582 |
. . . . . . . 8
⊢ (∃p〈{p}, 〈q, {{x}}〉〉 ∈ (( Ins2 SI ∼ (( Ins3 S ⊕ Ins2 SI ((
≤c ↾ ( ≤c
“ {1c})) ↾ Nn )) “ 1c) ∩ (V ×
( SI ◡TcFn
∘ ◡TcFn))) ∩ Ins3 S ) ↔ ∃p(p = {m ∈ Nn ∣ (1c ≤c m ∧ m ≤c x)} ∧ q = Tc Tc x
∧ p ∈ q)) |
79 | 6, 78 | bitri 240 |
. . . . . . 7
⊢ (〈q, {{x}}〉 ∈ ((( Ins2 SI ∼ (( Ins3 S ⊕ Ins2 SI (( ≤c ↾ ( ≤c “
{1c})) ↾ Nn )) “ 1c) ∩ (V ×
( SI ◡TcFn
∘ ◡TcFn))) ∩ Ins3 S ) “
1c) ↔ ∃p(p = {m ∈ Nn ∣
(1c ≤c m
∧ m
≤c x)} ∧ q = Tc Tc
x ∧
p ∈
q)) |
80 | 79 | exbii 1582 |
. . . . . 6
⊢ (∃q〈q, {{x}}〉 ∈ ((( Ins2 SI ∼ (( Ins3 S ⊕ Ins2 SI (( ≤c ↾ ( ≤c “
{1c})) ↾ Nn )) “ 1c) ∩ (V ×
( SI ◡TcFn
∘ ◡TcFn))) ∩ Ins3 S ) “
1c) ↔ ∃q∃p(p = {m ∈ Nn ∣
(1c ≤c m
∧ m
≤c x)} ∧ q = Tc Tc
x ∧
p ∈
q)) |
81 | 5, 80 | bitri 240 |
. . . . 5
⊢ ({{x}} ∈ ran (((
Ins2 SI ∼ ((
Ins3 S ⊕
Ins2 SI ((
≤c ↾ ( ≤c
“ {1c})) ↾ Nn )) “ 1c) ∩ (V ×
( SI ◡TcFn
∘ ◡TcFn))) ∩ Ins3 S ) “
1c) ↔ ∃q∃p(p = {m ∈ Nn ∣
(1c ≤c m
∧ m
≤c x)} ∧ q = Tc Tc
x ∧
p ∈
q)) |
82 | | excom 1741 |
. . . . 5
⊢ (∃q∃p(p = {m ∈ Nn ∣ (1c ≤c m ∧ m ≤c x)} ∧ q = Tc Tc x
∧ p ∈ q) ↔
∃p∃q(p = {m ∈ Nn ∣ (1c ≤c m ∧ m ≤c x)} ∧ q = Tc Tc x
∧ p ∈ q)) |
83 | | imasn 5019 |
. . . . . . . . . . 11
⊢ ( ≤c
“ {1c}) = {m ∣ 1c ≤c m} |
84 | | iniseg 5023 |
. . . . . . . . . . 11
⊢ (◡ ≤c “ {x}) = {m ∣ m
≤c x} |
85 | 83, 84 | ineq12i 3456 |
. . . . . . . . . 10
⊢ (( ≤c
“ {1c}) ∩ (◡ ≤c “ {x})) = ({m ∣ 1c ≤c m} ∩ {m
∣ m
≤c x}) |
86 | | inab 3523 |
. . . . . . . . . 10
⊢ ({m ∣
1c ≤c m}
∩ {m ∣ m
≤c x}) = {m ∣
(1c ≤c m
∧ m
≤c x)} |
87 | 85, 86 | eqtri 2373 |
. . . . . . . . 9
⊢ (( ≤c
“ {1c}) ∩ (◡ ≤c “ {x})) = {m ∣ (1c ≤c m ∧ m ≤c x)} |
88 | 87 | ineq1i 3454 |
. . . . . . . 8
⊢ (((
≤c “ {1c}) ∩ (◡ ≤c “ {x})) ∩ Nn ) =
({m ∣
(1c ≤c m
∧ m
≤c x)} ∩ Nn ) |
89 | | dfrab2 3531 |
. . . . . . . 8
⊢ {m ∈ Nn ∣
(1c ≤c m
∧ m
≤c x)} = ({m ∣
(1c ≤c m
∧ m
≤c x)} ∩ Nn ) |
90 | 88, 89 | eqtr4i 2376 |
. . . . . . 7
⊢ (((
≤c “ {1c}) ∩ (◡ ≤c “ {x})) ∩ Nn ) =
{m ∈
Nn ∣
(1c ≤c m
∧ m
≤c x)} |
91 | | lecex 6116 |
. . . . . . . . . 10
⊢ ≤c
∈ V |
92 | | snex 4112 |
. . . . . . . . . 10
⊢
{1c} ∈
V |
93 | 91, 92 | imaex 4748 |
. . . . . . . . 9
⊢ ( ≤c
“ {1c}) ∈
V |
94 | 91 | cnvex 5103 |
. . . . . . . . . 10
⊢ ◡ ≤c ∈ V |
95 | 94, 3 | imaex 4748 |
. . . . . . . . 9
⊢ (◡ ≤c “ {x}) ∈
V |
96 | 93, 95 | inex 4106 |
. . . . . . . 8
⊢ (( ≤c
“ {1c}) ∩ (◡ ≤c “ {x})) ∈
V |
97 | | nncex 4397 |
. . . . . . . 8
⊢ Nn ∈
V |
98 | 96, 97 | inex 4106 |
. . . . . . 7
⊢ (((
≤c “ {1c}) ∩ (◡ ≤c “ {x})) ∩ Nn ) ∈ V |
99 | 90, 98 | eqeltrri 2424 |
. . . . . 6
⊢ {m ∈ Nn ∣
(1c ≤c m
∧ m
≤c x)} ∈ V |
100 | | tcex 6158 |
. . . . . 6
⊢ Tc Tc
x ∈
V |
101 | | eleq1 2413 |
. . . . . 6
⊢ (p = {m ∈ Nn ∣ (1c ≤c m ∧ m ≤c x)} → (p
∈ q
↔ {m ∈ Nn ∣ (1c ≤c m ∧ m ≤c x)} ∈ q)) |
102 | | eleq2 2414 |
. . . . . 6
⊢ (q = Tc Tc x
→ ({m ∈ Nn ∣ (1c ≤c m ∧ m ≤c x)} ∈ q ↔ {m
∈ Nn ∣ (1c ≤c m ∧ m ≤c x)} ∈ Tc Tc
x)) |
103 | 99, 100, 101, 102 | ceqsex2v 2897 |
. . . . 5
⊢ (∃p∃q(p = {m ∈ Nn ∣ (1c ≤c m ∧ m ≤c x)} ∧ q = Tc Tc x
∧ p ∈ q) ↔
{m ∈
Nn ∣
(1c ≤c m
∧ m
≤c x)} ∈ Tc Tc x) |
104 | 81, 82, 103 | 3bitri 262 |
. . . 4
⊢ ({{x}} ∈ ran (((
Ins2 SI ∼ ((
Ins3 S ⊕
Ins2 SI ((
≤c ↾ ( ≤c
“ {1c})) ↾ Nn )) “ 1c) ∩ (V ×
( SI ◡TcFn
∘ ◡TcFn))) ∩ Ins3 S ) “
1c) ↔ {m ∈ Nn ∣ (1c ≤c m ∧ m ≤c x)} ∈ Tc Tc
x) |
105 | 2, 4, 104 | 3bitri 262 |
. . 3
⊢ (x ∈
⋃1⋃1ran ((( Ins2
SI ∼ (( Ins3
S ⊕ Ins2
SI (( ≤c ↾ ( ≤c “
{1c})) ↾ Nn )) “ 1c) ∩ (V ×
( SI ◡TcFn
∘ ◡TcFn))) ∩ Ins3 S ) “
1c) ↔ {m ∈ Nn ∣ (1c ≤c m ∧ m ≤c x)} ∈ Tc Tc
x) |
106 | 105 | abbi2i 2465 |
. 2
⊢
⋃1⋃1ran ((( Ins2 SI ∼ (( Ins3 S ⊕ Ins2 SI ((
≤c ↾ ( ≤c
“ {1c})) ↾ Nn )) “ 1c) ∩ (V ×
( SI ◡TcFn
∘ ◡TcFn))) ∩ Ins3 S ) “
1c) = {x ∣ {m ∈ Nn ∣ (1c ≤c m ∧ m ≤c x)} ∈ Tc Tc
x} |
107 | | ssetex 4745 |
. . . . . . . . . . . . . 14
⊢ S ∈
V |
108 | 107 | ins3ex 5799 |
. . . . . . . . . . . . 13
⊢ Ins3 S ∈ V |
109 | 91, 93 | resex 5118 |
. . . . . . . . . . . . . . . 16
⊢ ( ≤c
↾ ( ≤c “
{1c})) ∈ V |
110 | 109, 97 | resex 5118 |
. . . . . . . . . . . . . . 15
⊢ (( ≤c
↾ ( ≤c “
{1c})) ↾ Nn ) ∈
V |
111 | 110 | siex 4754 |
. . . . . . . . . . . . . 14
⊢ SI (( ≤c ↾ ( ≤c “
{1c})) ↾ Nn ) ∈
V |
112 | 111 | ins2ex 5798 |
. . . . . . . . . . . . 13
⊢ Ins2 SI ((
≤c ↾ ( ≤c
“ {1c})) ↾ Nn ) ∈
V |
113 | 108, 112 | symdifex 4109 |
. . . . . . . . . . . 12
⊢ ( Ins3 S ⊕ Ins2 SI ((
≤c ↾ ( ≤c
“ {1c})) ↾ Nn )) ∈
V |
114 | | 1cex 4143 |
. . . . . . . . . . . 12
⊢
1c ∈
V |
115 | 113, 114 | imaex 4748 |
. . . . . . . . . . 11
⊢ (( Ins3 S ⊕ Ins2 SI ((
≤c ↾ ( ≤c
“ {1c})) ↾ Nn )) “ 1c) ∈ V |
116 | 115 | complex 4105 |
. . . . . . . . . 10
⊢ ∼ (( Ins3 S ⊕ Ins2 SI ((
≤c ↾ ( ≤c
“ {1c})) ↾ Nn )) “ 1c) ∈ V |
117 | 116 | siex 4754 |
. . . . . . . . 9
⊢ SI ∼ (( Ins3 S ⊕ Ins2 SI (( ≤c ↾ ( ≤c “
{1c})) ↾ Nn )) “ 1c) ∈ V |
118 | 117 | ins2ex 5798 |
. . . . . . . 8
⊢ Ins2 SI ∼ (( Ins3 S ⊕ Ins2 SI ((
≤c ↾ ( ≤c
“ {1c})) ↾ Nn )) “ 1c) ∈ V |
119 | | vvex 4110 |
. . . . . . . . 9
⊢ V ∈ V |
120 | | tcfnex 6245 |
. . . . . . . . . . . 12
⊢ TcFn ∈ V |
121 | 120 | cnvex 5103 |
. . . . . . . . . . 11
⊢ ◡TcFn ∈
V |
122 | 121 | siex 4754 |
. . . . . . . . . 10
⊢ SI ◡TcFn ∈ V |
123 | 122, 121 | coex 4751 |
. . . . . . . . 9
⊢ ( SI ◡TcFn ∘ ◡TcFn)
∈ V |
124 | 119, 123 | xpex 5116 |
. . . . . . . 8
⊢ (V × ( SI ◡TcFn ∘ ◡TcFn))
∈ V |
125 | 118, 124 | inex 4106 |
. . . . . . 7
⊢ ( Ins2 SI ∼ (( Ins3 S ⊕ Ins2 SI ((
≤c ↾ ( ≤c
“ {1c})) ↾ Nn )) “ 1c) ∩ (V ×
( SI ◡TcFn
∘ ◡TcFn))) ∈
V |
126 | 125, 108 | inex 4106 |
. . . . . 6
⊢ (( Ins2 SI ∼ (( Ins3 S ⊕ Ins2 SI ((
≤c ↾ ( ≤c
“ {1c})) ↾ Nn )) “ 1c) ∩ (V ×
( SI ◡TcFn
∘ ◡TcFn))) ∩ Ins3 S ) ∈ V |
127 | 126, 114 | imaex 4748 |
. . . . 5
⊢ ((( Ins2 SI ∼ (( Ins3 S ⊕ Ins2 SI ((
≤c ↾ ( ≤c
“ {1c})) ↾ Nn )) “ 1c) ∩ (V ×
( SI ◡TcFn
∘ ◡TcFn))) ∩ Ins3 S ) “
1c) ∈ V |
128 | 127 | rnex 5108 |
. . . 4
⊢ ran ((( Ins2 SI ∼ (( Ins3 S ⊕ Ins2 SI ((
≤c ↾ ( ≤c
“ {1c})) ↾ Nn )) “ 1c) ∩ (V ×
( SI ◡TcFn
∘ ◡TcFn))) ∩ Ins3 S ) “
1c) ∈ V |
129 | 128 | uni1ex 4294 |
. . 3
⊢
⋃1ran ((( Ins2 SI ∼ (( Ins3 S ⊕ Ins2 SI (( ≤c ↾ ( ≤c “
{1c})) ↾ Nn )) “ 1c) ∩ (V ×
( SI ◡TcFn
∘ ◡TcFn))) ∩ Ins3 S ) “
1c) ∈ V |
130 | 129 | uni1ex 4294 |
. 2
⊢
⋃1⋃1ran ((( Ins2 SI ∼ (( Ins3 S ⊕ Ins2 SI ((
≤c ↾ ( ≤c
“ {1c})) ↾ Nn )) “ 1c) ∩ (V ×
( SI ◡TcFn
∘ ◡TcFn))) ∩ Ins3 S ) “
1c) ∈ V |
131 | 106, 130 | eqeltrri 2424 |
1
⊢ {x ∣ {m ∈ Nn ∣
(1c ≤c m
∧ m
≤c x)} ∈ Tc Tc x}
∈ V |