Proof of Theorem inrab2
Step | Hyp | Ref
| Expression |
1 | | df-rab 2624 |
. . 3
⊢ {x ∈ A ∣ φ} = {x
∣ (x
∈ A ∧ φ)} |
2 | | abid2 2471 |
. . . 4
⊢ {x ∣ x ∈ B} = B |
3 | 2 | eqcomi 2357 |
. . 3
⊢ B = {x ∣ x ∈ B} |
4 | 1, 3 | ineq12i 3456 |
. 2
⊢ ({x ∈ A ∣ φ} ∩ B) = ({x ∣ (x ∈ A ∧ φ)} ∩
{x ∣
x ∈
B}) |
5 | | df-rab 2624 |
. . 3
⊢ {x ∈ (A ∩ B) ∣ φ} =
{x ∣
(x ∈
(A ∩ B) ∧ φ)} |
6 | | inab 3523 |
. . . 4
⊢ ({x ∣ (x ∈ A ∧ φ)} ∩ {x ∣ x ∈ B}) = {x ∣ ((x ∈ A ∧ φ) ∧ x ∈ B)} |
7 | | elin 3220 |
. . . . . . 7
⊢ (x ∈ (A ∩ B)
↔ (x ∈ A ∧ x ∈ B)) |
8 | 7 | anbi1i 676 |
. . . . . 6
⊢ ((x ∈ (A ∩ B) ∧ φ) ↔
((x ∈
A ∧
x ∈
B) ∧ φ)) |
9 | | an32 773 |
. . . . . 6
⊢ (((x ∈ A ∧ x ∈ B) ∧ φ) ↔ ((x ∈ A ∧ φ) ∧
x ∈
B)) |
10 | 8, 9 | bitri 240 |
. . . . 5
⊢ ((x ∈ (A ∩ B) ∧ φ) ↔
((x ∈
A ∧ φ) ∧
x ∈
B)) |
11 | 10 | abbii 2466 |
. . . 4
⊢ {x ∣ (x ∈ (A ∩ B) ∧ φ)} =
{x ∣
((x ∈
A ∧ φ) ∧
x ∈
B)} |
12 | 6, 11 | eqtr4i 2376 |
. . 3
⊢ ({x ∣ (x ∈ A ∧ φ)} ∩ {x ∣ x ∈ B}) = {x ∣ (x ∈ (A ∩
B) ∧ φ)} |
13 | 5, 12 | eqtr4i 2376 |
. 2
⊢ {x ∈ (A ∩ B) ∣ φ} =
({x ∣
(x ∈
A ∧ φ)} ∩ {x ∣ x ∈ B}) |
14 | 4, 13 | eqtr4i 2376 |
1
⊢ ({x ∈ A ∣ φ} ∩ B) = {x ∈ (A ∩
B) ∣
φ} |