New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > intminss | GIF version |
Description: Under subset ordering, the intersection of a restricted class abstraction is less than or equal to any of its members. (Contributed by NM, 7-Sep-2013.) |
Ref | Expression |
---|---|
intminss.1 | ⊢ (x = A → (φ ↔ ψ)) |
Ref | Expression |
---|---|
intminss | ⊢ ((A ∈ B ∧ ψ) → ∩{x ∈ B ∣ φ} ⊆ A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intminss.1 | . . 3 ⊢ (x = A → (φ ↔ ψ)) | |
2 | 1 | elrab 2995 | . 2 ⊢ (A ∈ {x ∈ B ∣ φ} ↔ (A ∈ B ∧ ψ)) |
3 | intss1 3942 | . 2 ⊢ (A ∈ {x ∈ B ∣ φ} → ∩{x ∈ B ∣ φ} ⊆ A) | |
4 | 2, 3 | sylbir 204 | 1 ⊢ ((A ∈ B ∧ ψ) → ∩{x ∈ B ∣ φ} ⊆ A) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {crab 2619 ⊆ wss 3258 ∩cint 3927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rab 2624 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-int 3928 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |