New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > iotabidv | GIF version |
Description: Formula-building deduction rule for iota. (Contributed by NM, 20-Aug-2011.) |
Ref | Expression |
---|---|
iotabidv.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
iotabidv | ⊢ (φ → (℩xψ) = (℩xχ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotabidv.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
2 | 1 | alrimiv 1631 | . 2 ⊢ (φ → ∀x(ψ ↔ χ)) |
3 | iotabi 4349 | . 2 ⊢ (∀x(ψ ↔ χ) → (℩xψ) = (℩xχ)) | |
4 | 2, 3 | syl 15 | 1 ⊢ (φ → (℩xψ) = (℩xχ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 = wceq 1642 ℩cio 4338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-uni 3893 df-iota 4340 |
This theorem is referenced by: csbiotag 4372 ncfineq 4474 tfineq 4489 fveq1 5328 fveq2 5329 csbfv12g 5337 fvres 5343 tceq 6159 |
Copyright terms: Public domain | W3C validator |