New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ncfineq | GIF version |
Description: Equality theorem for finite cardinality. (Contributed by SF, 20-Jan-2015.) |
Ref | Expression |
---|---|
ncfineq | ⊢ (A = B → Ncfin A = Ncfin B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2413 | . . . 4 ⊢ (A = B → (A ∈ x ↔ B ∈ x)) | |
2 | 1 | anbi2d 684 | . . 3 ⊢ (A = B → ((x ∈ Nn ∧ A ∈ x) ↔ (x ∈ Nn ∧ B ∈ x))) |
3 | 2 | iotabidv 4361 | . 2 ⊢ (A = B → (℩x(x ∈ Nn ∧ A ∈ x)) = (℩x(x ∈ Nn ∧ B ∈ x))) |
4 | df-ncfin 4443 | . 2 ⊢ Ncfin A = (℩x(x ∈ Nn ∧ A ∈ x)) | |
5 | df-ncfin 4443 | . 2 ⊢ Ncfin B = (℩x(x ∈ Nn ∧ B ∈ x)) | |
6 | 3, 4, 5 | 3eqtr4g 2410 | 1 ⊢ (A = B → Ncfin A = Ncfin B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ℩cio 4338 Nn cnnc 4374 Ncfin cncfin 4435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-uni 3893 df-iota 4340 df-ncfin 4443 |
This theorem is referenced by: tncveqnc1fin 4545 vfintle 4547 vfin1cltv 4548 vfinncsp 4555 |
Copyright terms: Public domain | W3C validator |