NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ncfineq GIF version

Theorem ncfineq 4474
Description: Equality theorem for finite cardinality. (Contributed by SF, 20-Jan-2015.)
Assertion
Ref Expression
ncfineq (A = BNcfin A = Ncfin B)

Proof of Theorem ncfineq
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 eleq1 2413 . . . 4 (A = B → (A xB x))
21anbi2d 684 . . 3 (A = B → ((x Nn A x) ↔ (x Nn B x)))
32iotabidv 4361 . 2 (A = B → (℩x(x Nn A x)) = (℩x(x Nn B x)))
4 df-ncfin 4443 . 2 Ncfin A = (℩x(x Nn A x))
5 df-ncfin 4443 . 2 Ncfin B = (℩x(x Nn B x))
63, 4, 53eqtr4g 2410 1 (A = BNcfin A = Ncfin B)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   = wceq 1642   wcel 1710  cio 4338   Nn cnnc 4374   Ncfin cncfin 4435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621  df-uni 3893  df-iota 4340  df-ncfin 4443
This theorem is referenced by:  tncveqnc1fin  4545  vfintle  4547  vfin1cltv  4548  vfinncsp  4555
  Copyright terms: Public domain W3C validator