New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fveq2 | GIF version |
Description: Equality theorem for function value. (Contributed by set.mm contributors, 29-Dec-1996.) |
Ref | Expression |
---|---|
fveq2 | ⊢ (A = B → (F ‘A) = (F ‘B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 4643 | . . 3 ⊢ (A = B → (AFx ↔ BFx)) | |
2 | 1 | iotabidv 4361 | . 2 ⊢ (A = B → (℩xAFx) = (℩xBFx)) |
3 | df-fv 4796 | . 2 ⊢ (F ‘A) = (℩xAFx) | |
4 | df-fv 4796 | . 2 ⊢ (F ‘B) = (℩xBFx) | |
5 | 2, 3, 4 | 3eqtr4g 2410 | 1 ⊢ (A = B → (F ‘A) = (F ‘B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ℩cio 4338 class class class wbr 4640 ‘cfv 4782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-br 4641 df-fv 4796 |
This theorem is referenced by: fveq2i 5332 fveq2d 5333 fvif 5341 dffn5 5364 eqfnfv2f 5397 fnasrn 5418 foco2 5427 ffnfvf 5429 fnressn 5439 fressnfv 5440 fvi 5443 fconstfv 5457 funiunfv 5468 funiunfvf 5469 dff13f 5473 f1fveq 5474 f1elima 5475 f1ocnvfv 5479 f1ocnvfvb 5480 isorel 5490 isocnv 5492 isotr 5496 f1oiso2 5501 1st2nd2 5517 op1std 5523 op2ndd 5524 ffnov 5588 eqfnov 5590 fnov 5592 fnrnov 5606 foov 5607 funimassov 5610 ovelimab 5611 fvmptss 5706 fvmptf 5723 pw1fnf1o 5856 fvfullfun 5865 fce 6189 nchoicelem9 6298 nchoicelem12 6301 nchoicelem17 6306 nchoicelem19 6308 |
Copyright terms: Public domain | W3C validator |