NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  iuncom4 GIF version

Theorem iuncom4 3977
Description: Commutation of union with indexed union. (Contributed by Mario Carneiro, 18-Jan-2014.)
Assertion
Ref Expression
iuncom4 x A B = x A B

Proof of Theorem iuncom4
Dummy variables y z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rex 2621 . . . . . . 7 (z B y zz(z B y z))
21rexbii 2640 . . . . . 6 (x A z B y zx A z(z B y z))
3 rexcom4 2879 . . . . . 6 (x A z(z B y z) ↔ zx A (z B y z))
42, 3bitri 240 . . . . 5 (x A z B y zzx A (z B y z))
5 r19.41v 2765 . . . . . 6 (x A (z B y z) ↔ (x A z B y z))
65exbii 1582 . . . . 5 (zx A (z B y z) ↔ z(x A z B y z))
74, 6bitri 240 . . . 4 (x A z B y zz(x A z B y z))
8 eluni2 3896 . . . . 5 (y Bz B y z)
98rexbii 2640 . . . 4 (x A y Bx A z B y z)
10 df-rex 2621 . . . . 5 (z x A By zz(z x A B y z))
11 eliun 3974 . . . . . . 7 (z x A Bx A z B)
1211anbi1i 676 . . . . . 6 ((z x A B y z) ↔ (x A z B y z))
1312exbii 1582 . . . . 5 (z(z x A B y z) ↔ z(x A z B y z))
1410, 13bitri 240 . . . 4 (z x A By zz(x A z B y z))
157, 9, 143bitr4i 268 . . 3 (x A y Bz x A By z)
16 eliun 3974 . . 3 (y x A Bx A y B)
17 eluni2 3896 . . 3 (y x A Bz x A By z)
1815, 16, 173bitr4i 268 . 2 (y x A By x A B)
1918eqriv 2350 1 x A B = x A B
Colors of variables: wff setvar class
Syntax hints:   wa 358  wex 1541   = wceq 1642   wcel 1710  wrex 2616  cuni 3892  ciun 3970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rex 2621  df-v 2862  df-uni 3893  df-iun 3972
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator