New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > iunrab | GIF version |
Description: The indexed union of a restricted class abstraction. (Contributed by NM, 3-Jan-2004.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
iunrab | ⊢ ∪x ∈ A {y ∈ B ∣ φ} = {y ∈ B ∣ ∃x ∈ A φ} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunab 4013 | . 2 ⊢ ∪x ∈ A {y ∣ (y ∈ B ∧ φ)} = {y ∣ ∃x ∈ A (y ∈ B ∧ φ)} | |
2 | df-rab 2624 | . . . 4 ⊢ {y ∈ B ∣ φ} = {y ∣ (y ∈ B ∧ φ)} | |
3 | 2 | a1i 10 | . . 3 ⊢ (x ∈ A → {y ∈ B ∣ φ} = {y ∣ (y ∈ B ∧ φ)}) |
4 | 3 | iuneq2i 3988 | . 2 ⊢ ∪x ∈ A {y ∈ B ∣ φ} = ∪x ∈ A {y ∣ (y ∈ B ∧ φ)} |
5 | df-rab 2624 | . . 3 ⊢ {y ∈ B ∣ ∃x ∈ A φ} = {y ∣ (y ∈ B ∧ ∃x ∈ A φ)} | |
6 | r19.42v 2766 | . . . 4 ⊢ (∃x ∈ A (y ∈ B ∧ φ) ↔ (y ∈ B ∧ ∃x ∈ A φ)) | |
7 | 6 | abbii 2466 | . . 3 ⊢ {y ∣ ∃x ∈ A (y ∈ B ∧ φ)} = {y ∣ (y ∈ B ∧ ∃x ∈ A φ)} |
8 | 5, 7 | eqtr4i 2376 | . 2 ⊢ {y ∈ B ∣ ∃x ∈ A φ} = {y ∣ ∃x ∈ A (y ∈ B ∧ φ)} |
9 | 1, 4, 8 | 3eqtr4i 2383 | 1 ⊢ ∪x ∈ A {y ∈ B ∣ φ} = {y ∈ B ∣ ∃x ∈ A φ} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 = wceq 1642 ∈ wcel 1710 {cab 2339 ∃wrex 2616 {crab 2619 ∪ciun 3970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-rab 2624 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-iun 3972 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |