New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mp3an | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 14-May-1999.) |
Ref | Expression |
---|---|
mp3an.1 | ⊢ φ |
mp3an.2 | ⊢ ψ |
mp3an.3 | ⊢ χ |
mp3an.4 | ⊢ ((φ ∧ ψ ∧ χ) → θ) |
Ref | Expression |
---|---|
mp3an | ⊢ θ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an.2 | . 2 ⊢ ψ | |
2 | mp3an.3 | . 2 ⊢ χ | |
3 | mp3an.1 | . . 3 ⊢ φ | |
4 | mp3an.4 | . . 3 ⊢ ((φ ∧ ψ ∧ χ) → θ) | |
5 | 3, 4 | mp3an1 1264 | . 2 ⊢ ((ψ ∧ χ) → θ) |
6 | 1, 2, 5 | mp2an 653 | 1 ⊢ θ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: vtocl3 2912 raltp 3782 rextp 3783 opkth 4133 otkelins2k 4256 otkelins3k 4257 caovass 5628 caovdi 5635 oprabid2 5647 clos1is 5882 clos10 5888 elmap 6018 elpm 6020 elpm2 6021 xpassen 6058 tcdi 6165 ce0addcnnul 6180 tlenc1c 6241 ncvsq 6257 nchoicelem9 6298 frecxp 6315 |
Copyright terms: Public domain | W3C validator |