New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mp3an | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 14-May-1999.) |
Ref | Expression |
---|---|
mp3an.1 | ⊢ φ |
mp3an.2 | ⊢ ψ |
mp3an.3 | ⊢ χ |
mp3an.4 | ⊢ ((φ ∧ ψ ∧ χ) → θ) |
Ref | Expression |
---|---|
mp3an | ⊢ θ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an.2 | . 2 ⊢ ψ | |
2 | mp3an.3 | . 2 ⊢ χ | |
3 | mp3an.1 | . . 3 ⊢ φ | |
4 | mp3an.4 | . . 3 ⊢ ((φ ∧ ψ ∧ χ) → θ) | |
5 | 3, 4 | mp3an1 1264 | . 2 ⊢ ((ψ ∧ χ) → θ) |
6 | 1, 2, 5 | mp2an 653 | 1 ⊢ θ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: vtocl3 2911 raltp 3781 rextp 3782 opkth 4132 otkelins2k 4255 otkelins3k 4256 caovass 5627 caovdi 5634 oprabid2 5646 clos1is 5881 clos10 5887 elmap 6017 elpm 6019 elpm2 6020 xpassen 6057 tcdi 6164 ce0addcnnul 6179 tlenc1c 6240 ncvsq 6256 nchoicelem9 6297 frecxp 6314 |
Copyright terms: Public domain | W3C validator |