NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mp3an GIF version

Theorem mp3an 1277
Description: An inference based on modus ponens. (Contributed by NM, 14-May-1999.)
Hypotheses
Ref Expression
mp3an.1 φ
mp3an.2 ψ
mp3an.3 χ
mp3an.4 ((φ ψ χ) → θ)
Assertion
Ref Expression
mp3an θ

Proof of Theorem mp3an
StepHypRef Expression
1 mp3an.2 . 2 ψ
2 mp3an.3 . 2 χ
3 mp3an.1 . . 3 φ
4 mp3an.4 . . 3 ((φ ψ χ) → θ)
53, 4mp3an1 1264 . 2 ((ψ χ) → θ)
61, 2, 5mp2an 653 1 θ
Colors of variables: wff setvar class
Syntax hints:  wi 4   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  vtocl3  2912  raltp  3782  rextp  3783  opkth  4133  otkelins2k  4256  otkelins3k  4257  caovass  5628  caovdi  5635  oprabid2  5647  clos1is  5882  clos10  5888  elmap  6018  elpm  6020  elpm2  6021  xpassen  6058  tcdi  6165  ce0addcnnul  6180  tlenc1c  6241  ncvsq  6257  nchoicelem9  6298  frecxp  6315
  Copyright terms: Public domain W3C validator