New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > oprabid2 | GIF version |
Description: Identity law for operator abstractions. (Contributed by Scott Fenton, 19-Apr-2021.) |
Ref | Expression |
---|---|
oprabid2 | ⊢ {〈〈x, y〉, z〉 ∣ 〈〈x, y〉, z〉 ∈ A} = A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2863 | . . 3 ⊢ w ∈ V | |
2 | vex 2863 | . . 3 ⊢ t ∈ V | |
3 | vex 2863 | . . 3 ⊢ u ∈ V | |
4 | opeq1 4579 | . . . . . 6 ⊢ (x = w → 〈x, y〉 = 〈w, y〉) | |
5 | 4 | opeq1d 4585 | . . . . 5 ⊢ (x = w → 〈〈x, y〉, z〉 = 〈〈w, y〉, z〉) |
6 | 5 | eleq1d 2419 | . . . 4 ⊢ (x = w → (〈〈x, y〉, z〉 ∈ A ↔ 〈〈w, y〉, z〉 ∈ A)) |
7 | opeq2 4580 | . . . . . 6 ⊢ (y = t → 〈w, y〉 = 〈w, t〉) | |
8 | 7 | opeq1d 4585 | . . . . 5 ⊢ (y = t → 〈〈w, y〉, z〉 = 〈〈w, t〉, z〉) |
9 | 8 | eleq1d 2419 | . . . 4 ⊢ (y = t → (〈〈w, y〉, z〉 ∈ A ↔ 〈〈w, t〉, z〉 ∈ A)) |
10 | opeq2 4580 | . . . . 5 ⊢ (z = u → 〈〈w, t〉, z〉 = 〈〈w, t〉, u〉) | |
11 | 10 | eleq1d 2419 | . . . 4 ⊢ (z = u → (〈〈w, t〉, z〉 ∈ A ↔ 〈〈w, t〉, u〉 ∈ A)) |
12 | 6, 9, 11 | eloprabg 5580 | . . 3 ⊢ ((w ∈ V ∧ t ∈ V ∧ u ∈ V) → (〈〈w, t〉, u〉 ∈ {〈〈x, y〉, z〉 ∣ 〈〈x, y〉, z〉 ∈ A} ↔ 〈〈w, t〉, u〉 ∈ A)) |
13 | 1, 2, 3, 12 | mp3an 1277 | . 2 ⊢ (〈〈w, t〉, u〉 ∈ {〈〈x, y〉, z〉 ∣ 〈〈x, y〉, z〉 ∈ A} ↔ 〈〈w, t〉, u〉 ∈ A) |
14 | 13 | eqoprriv 4854 | 1 ⊢ {〈〈x, y〉, z〉 ∣ 〈〈x, y〉, z〉 ∈ A} = A |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 = wceq 1642 ∈ wcel 1710 Vcvv 2860 〈cop 4562 {coprab 5528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-oprab 5529 |
This theorem is referenced by: oprabbi2i 5648 |
Copyright terms: Public domain | W3C validator |