New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > otkelins3k | GIF version |
Description: Kuratowski ordered triple membership in Kuratowski insertion operator. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
otkelinsk.1 | ⊢ A ∈ V |
otkelinsk.2 | ⊢ B ∈ V |
otkelinsk.3 | ⊢ C ∈ V |
Ref | Expression |
---|---|
otkelins3k | ⊢ (⟪{{A}}, ⟪B, C⟫⟫ ∈ Ins3k D ↔ ⟪A, B⟫ ∈ D) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | otkelinsk.1 | . 2 ⊢ A ∈ V | |
2 | otkelinsk.2 | . 2 ⊢ B ∈ V | |
3 | otkelinsk.3 | . 2 ⊢ C ∈ V | |
4 | otkelins3kg 4255 | . 2 ⊢ ((A ∈ V ∧ B ∈ V ∧ C ∈ V) → (⟪{{A}}, ⟪B, C⟫⟫ ∈ Ins3k D ↔ ⟪A, B⟫ ∈ D)) | |
5 | 1, 2, 3, 4 | mp3an 1277 | 1 ⊢ (⟪{{A}}, ⟪B, C⟫⟫ ∈ Ins3k D ↔ ⟪A, B⟫ ∈ D) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∈ wcel 1710 Vcvv 2860 {csn 3738 ⟪copk 4058 Ins3k cins3k 4178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 df-ins3k 4189 |
This theorem is referenced by: ins3kexg 4307 ndisjrelk 4324 dfaddc2 4382 nnsucelrlem1 4425 ltfinex 4465 eqpwrelk 4479 eqpw1relk 4480 ncfinraiselem2 4481 ncfinlowerlem1 4483 eqtfinrelk 4487 evenfinex 4504 oddfinex 4505 evenodddisjlem1 4516 nnadjoinlem1 4520 nnpweqlem1 4523 srelk 4525 sfintfinlem1 4532 tfinnnlem1 4534 spfinex 4538 dfop2lem1 4574 setconslem2 4733 setconslem3 4734 setconslem7 4738 dfswap2 4742 |
Copyright terms: Public domain | W3C validator |