NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  otkelins2k GIF version

Theorem otkelins2k 4256
Description: Kuratowski ordered triple membership in Kuratowski insertion operator. (Contributed by SF, 12-Jan-2015.)
Hypotheses
Ref Expression
otkelinsk.1 A V
otkelinsk.2 B V
otkelinsk.3 C V
Assertion
Ref Expression
otkelins2k (⟪{{A}}, ⟪B, C⟫⟫ Ins2k D ↔ ⟪A, C D)

Proof of Theorem otkelins2k
StepHypRef Expression
1 otkelinsk.1 . 2 A V
2 otkelinsk.2 . 2 B V
3 otkelinsk.3 . 2 C V
4 otkelins2kg 4254 . 2 ((A V B V C V) → (⟪{{A}}, ⟪B, C⟫⟫ Ins2k D ↔ ⟪A, C D))
51, 2, 3, 4mp3an 1277 1 (⟪{{A}}, ⟪B, C⟫⟫ Ins2k D ↔ ⟪A, C D)
Colors of variables: wff setvar class
Syntax hints:  wb 176   wcel 1710  Vcvv 2860  {csn 3738  copk 4058   Ins2k cins2k 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-pr 3743  df-opk 4059  df-ins2k 4188
This theorem is referenced by:  ins2kexg  4306  ndisjrelk  4324  dfaddc2  4382  nnsucelrlem1  4425  ltfinex  4465  eqpwrelk  4479  eqpw1relk  4480  ncfinraiselem2  4481  ncfinlowerlem1  4483  eqtfinrelk  4487  evenfinex  4504  oddfinex  4505  evenodddisjlem1  4516  nnadjoinlem1  4520  nnpweqlem1  4523  srelk  4525  sfintfinlem1  4532  tfinnnlem1  4534  spfinex  4538  dfop2lem1  4574  setconslem2  4733  setconslem3  4734  setconslem7  4738  dfswap2  4742
  Copyright terms: Public domain W3C validator