NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  opkth GIF version

Theorem opkth 4133
Description: Two Kuratowski ordered pairs are equal iff their components are equal. (Contributed by SF, 12-Jan-2015.)
Hypotheses
Ref Expression
opkth.1 A V
opkth.2 B V
opkth.3 D V
Assertion
Ref Expression
opkth (⟪A, B⟫ = ⟪C, D⟫ ↔ (A = C B = D))

Proof of Theorem opkth
StepHypRef Expression
1 opkth.1 . 2 A V
2 opkth.2 . 2 B V
3 opkth.3 . 2 D V
4 opkthg 4132 . 2 ((A V B V D V) → (⟪A, B⟫ = ⟪C, D⟫ ↔ (A = C B = D)))
51, 2, 3, 4mp3an 1277 1 (⟪A, B⟫ = ⟪C, D⟫ ↔ (A = C B = D))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358   = wceq 1642   wcel 1710  Vcvv 2860  copk 4058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-pr 3743  df-opk 4059
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator