New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > opkth | GIF version |
Description: Two Kuratowski ordered pairs are equal iff their components are equal. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
opkth.1 | ⊢ A ∈ V |
opkth.2 | ⊢ B ∈ V |
opkth.3 | ⊢ D ∈ V |
Ref | Expression |
---|---|
opkth | ⊢ (⟪A, B⟫ = ⟪C, D⟫ ↔ (A = C ∧ B = D)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opkth.1 | . 2 ⊢ A ∈ V | |
2 | opkth.2 | . 2 ⊢ B ∈ V | |
3 | opkth.3 | . 2 ⊢ D ∈ V | |
4 | opkthg 4132 | . 2 ⊢ ((A ∈ V ∧ B ∈ V ∧ D ∈ V) → (⟪A, B⟫ = ⟪C, D⟫ ↔ (A = C ∧ B = D))) | |
5 | 1, 2, 3, 4 | mp3an 1277 | 1 ⊢ (⟪A, B⟫ = ⟪C, D⟫ ↔ (A = C ∧ B = D)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 Vcvv 2860 ⟪copk 4058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |