New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfiota1 | GIF version |
Description: Bound-variable hypothesis builder for the ℩ class. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfiota1 | ⊢ Ⅎx(℩xφ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiota2 4341 | . 2 ⊢ (℩xφ) = ∪{y ∣ ∀x(φ ↔ x = y)} | |
2 | nfaba1 2495 | . . 3 ⊢ Ⅎx{y ∣ ∀x(φ ↔ x = y)} | |
3 | 2 | nfuni 3898 | . 2 ⊢ Ⅎx∪{y ∣ ∀x(φ ↔ x = y)} |
4 | 1, 3 | nfcxfr 2487 | 1 ⊢ Ⅎx(℩xφ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∀wal 1540 = wceq 1642 {cab 2339 Ⅎwnfc 2477 ∪cuni 3892 ℩cio 4338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-sn 3742 df-uni 3893 df-iota 4340 |
This theorem is referenced by: iota2df 4366 sniota 4370 |
Copyright terms: Public domain | W3C validator |