NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfiota1 GIF version

Theorem nfiota1 4342
Description: Bound-variable hypothesis builder for the class. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
nfiota1 x(℩xφ)

Proof of Theorem nfiota1
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 dfiota2 4341 . 2 (℩xφ) = {y x(φx = y)}
2 nfaba1 2495 . . 3 x{y x(φx = y)}
32nfuni 3898 . 2 x{y x(φx = y)}
41, 3nfcxfr 2487 1 x(℩xφ)
Colors of variables: wff setvar class
Syntax hints:  wb 176  wal 1540   = wceq 1642  {cab 2339  wnfc 2477  cuni 3892  cio 4338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rex 2621  df-sn 3742  df-uni 3893  df-iota 4340
This theorem is referenced by:  iota2df  4366  sniota  4370
  Copyright terms: Public domain W3C validator