Step | Hyp | Ref
| Expression |
1 | | dfco2 5081 |
. 2
⊢ (A ∘ B) = ∪x ∈ V ((◡B
“ {x}) × (A “ {x})) |
2 | | elimasn 5020 |
. . . . . . . . . . . . 13
⊢ (w ∈ (A “ {x})
↔ 〈x, w〉 ∈ A) |
3 | | opeldm 4911 |
. . . . . . . . . . . . 13
⊢ (〈x, w〉 ∈ A →
x ∈ dom
A) |
4 | 2, 3 | sylbi 187 |
. . . . . . . . . . . 12
⊢ (w ∈ (A “ {x})
→ x ∈ dom A) |
5 | | eliniseg 5021 |
. . . . . . . . . . . . 13
⊢ (z ∈ (◡B
“ {x}) ↔ zBx) |
6 | | brelrn 4961 |
. . . . . . . . . . . . 13
⊢ (zBx → x ∈ ran B) |
7 | 5, 6 | sylbi 187 |
. . . . . . . . . . . 12
⊢ (z ∈ (◡B
“ {x}) → x ∈ ran B) |
8 | 4, 7 | anim12i 549 |
. . . . . . . . . . 11
⊢ ((w ∈ (A “ {x})
∧ z ∈ (◡B
“ {x})) → (x ∈ dom A ∧ x ∈ ran B)) |
9 | 8 | ancoms 439 |
. . . . . . . . . 10
⊢ ((z ∈ (◡B
“ {x}) ∧ w ∈ (A “
{x})) → (x ∈ dom A ∧ x ∈ ran B)) |
10 | 9 | adantl 452 |
. . . . . . . . 9
⊢ ((y = 〈z, w〉 ∧ (z ∈ (◡B
“ {x}) ∧ w ∈ (A “
{x}))) → (x ∈ dom A ∧ x ∈ ran B)) |
11 | 10 | exlimivv 1635 |
. . . . . . . 8
⊢ (∃z∃w(y = 〈z, w〉 ∧ (z ∈ (◡B
“ {x}) ∧ w ∈ (A “
{x}))) → (x ∈ dom A ∧ x ∈ ran B)) |
12 | | elxp 4802 |
. . . . . . . 8
⊢ (y ∈ ((◡B
“ {x}) × (A “ {x}))
↔ ∃z∃w(y = 〈z, w〉 ∧ (z ∈ (◡B
“ {x}) ∧ w ∈ (A “
{x})))) |
13 | | elin 3220 |
. . . . . . . 8
⊢ (x ∈ (dom A ∩ ran B)
↔ (x ∈ dom A ∧ x ∈ ran B)) |
14 | 11, 12, 13 | 3imtr4i 257 |
. . . . . . 7
⊢ (y ∈ ((◡B
“ {x}) × (A “ {x}))
→ x ∈ (dom A ∩
ran B)) |
15 | | ssel 3268 |
. . . . . . 7
⊢ ((dom A ∩ ran B)
⊆ C
→ (x ∈ (dom A ∩
ran B) → x ∈ C)) |
16 | 14, 15 | syl5 28 |
. . . . . 6
⊢ ((dom A ∩ ran B)
⊆ C
→ (y ∈ ((◡B
“ {x}) × (A “ {x}))
→ x ∈ C)) |
17 | 16 | pm4.71rd 616 |
. . . . 5
⊢ ((dom A ∩ ran B)
⊆ C
→ (y ∈ ((◡B
“ {x}) × (A “ {x}))
↔ (x ∈ C ∧ y ∈ ((◡B
“ {x}) × (A “ {x}))))) |
18 | 17 | exbidv 1626 |
. . . 4
⊢ ((dom A ∩ ran B)
⊆ C
→ (∃x y ∈ ((◡B
“ {x}) × (A “ {x}))
↔ ∃x(x ∈ C ∧ y ∈ ((◡B
“ {x}) × (A “ {x}))))) |
19 | | eliun 3974 |
. . . . 5
⊢ (y ∈ ∪x ∈ V ((◡B
“ {x}) × (A “ {x}))
↔ ∃x ∈ V y ∈ ((◡B
“ {x}) × (A “ {x}))) |
20 | | rexv 2874 |
. . . . 5
⊢ (∃x ∈ V y ∈ ((◡B
“ {x}) × (A “ {x}))
↔ ∃x y ∈ ((◡B
“ {x}) × (A “ {x}))) |
21 | 19, 20 | bitri 240 |
. . . 4
⊢ (y ∈ ∪x ∈ V ((◡B
“ {x}) × (A “ {x}))
↔ ∃x y ∈ ((◡B
“ {x}) × (A “ {x}))) |
22 | | eliun 3974 |
. . . . 5
⊢ (y ∈ ∪x ∈ C ((◡B
“ {x}) × (A “ {x}))
↔ ∃x ∈ C y ∈ ((◡B
“ {x}) × (A “ {x}))) |
23 | | df-rex 2621 |
. . . . 5
⊢ (∃x ∈ C y ∈ ((◡B
“ {x}) × (A “ {x}))
↔ ∃x(x ∈ C ∧ y ∈ ((◡B
“ {x}) × (A “ {x})))) |
24 | 22, 23 | bitri 240 |
. . . 4
⊢ (y ∈ ∪x ∈ C ((◡B
“ {x}) × (A “ {x}))
↔ ∃x(x ∈ C ∧ y ∈ ((◡B
“ {x}) × (A “ {x})))) |
25 | 18, 21, 24 | 3bitr4g 279 |
. . 3
⊢ ((dom A ∩ ran B)
⊆ C
→ (y ∈ ∪x ∈ V ((◡B
“ {x}) × (A “ {x}))
↔ y ∈ ∪x ∈ C ((◡B
“ {x}) × (A “ {x})))) |
26 | 25 | eqrdv 2351 |
. 2
⊢ ((dom A ∩ ran B)
⊆ C
→ ∪x
∈ V ((◡B
“ {x}) × (A “ {x}))
= ∪x
∈ C
((◡B “ {x})
× (A “ {x}))) |
27 | 1, 26 | syl5eq 2397 |
1
⊢ ((dom A ∩ ran B)
⊆ C
→ (A ∘ B) =
∪x ∈ C ((◡B
“ {x}) × (A “ {x}))) |