NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dfco2a GIF version

Theorem dfco2a 5082
Description: Generalization of dfco2 5081, where C can have any value between dom A ∩ ran B and V. (The proof was shortened by Andrew Salmon, 27-Aug-2011.) (Contributed by set.mm contributors, 21-Dec-2008.) (Revised by set.mm contributors, 27-Aug-2011.)
Assertion
Ref Expression
dfco2a ((dom A ∩ ran B) C → (A B) = x C ((B “ {x}) × (A “ {x})))
Distinct variable groups:   x,A   x,B   x,C

Proof of Theorem dfco2a
Dummy variables w y z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfco2 5081 . 2 (A B) = x V ((B “ {x}) × (A “ {x}))
2 elimasn 5020 . . . . . . . . . . . . 13 (w (A “ {x}) ↔ x, w A)
3 opeldm 4911 . . . . . . . . . . . . 13 (x, w Ax dom A)
42, 3sylbi 187 . . . . . . . . . . . 12 (w (A “ {x}) → x dom A)
5 eliniseg 5021 . . . . . . . . . . . . 13 (z (B “ {x}) ↔ zBx)
6 brelrn 4961 . . . . . . . . . . . . 13 (zBxx ran B)
75, 6sylbi 187 . . . . . . . . . . . 12 (z (B “ {x}) → x ran B)
84, 7anim12i 549 . . . . . . . . . . 11 ((w (A “ {x}) z (B “ {x})) → (x dom A x ran B))
98ancoms 439 . . . . . . . . . 10 ((z (B “ {x}) w (A “ {x})) → (x dom A x ran B))
109adantl 452 . . . . . . . . 9 ((y = z, w (z (B “ {x}) w (A “ {x}))) → (x dom A x ran B))
1110exlimivv 1635 . . . . . . . 8 (zw(y = z, w (z (B “ {x}) w (A “ {x}))) → (x dom A x ran B))
12 elxp 4802 . . . . . . . 8 (y ((B “ {x}) × (A “ {x})) ↔ zw(y = z, w (z (B “ {x}) w (A “ {x}))))
13 elin 3220 . . . . . . . 8 (x (dom A ∩ ran B) ↔ (x dom A x ran B))
1411, 12, 133imtr4i 257 . . . . . . 7 (y ((B “ {x}) × (A “ {x})) → x (dom A ∩ ran B))
15 ssel 3268 . . . . . . 7 ((dom A ∩ ran B) C → (x (dom A ∩ ran B) → x C))
1614, 15syl5 28 . . . . . 6 ((dom A ∩ ran B) C → (y ((B “ {x}) × (A “ {x})) → x C))
1716pm4.71rd 616 . . . . 5 ((dom A ∩ ran B) C → (y ((B “ {x}) × (A “ {x})) ↔ (x C y ((B “ {x}) × (A “ {x})))))
1817exbidv 1626 . . . 4 ((dom A ∩ ran B) C → (x y ((B “ {x}) × (A “ {x})) ↔ x(x C y ((B “ {x}) × (A “ {x})))))
19 eliun 3974 . . . . 5 (y x V ((B “ {x}) × (A “ {x})) ↔ x V y ((B “ {x}) × (A “ {x})))
20 rexv 2874 . . . . 5 (x V y ((B “ {x}) × (A “ {x})) ↔ x y ((B “ {x}) × (A “ {x})))
2119, 20bitri 240 . . . 4 (y x V ((B “ {x}) × (A “ {x})) ↔ x y ((B “ {x}) × (A “ {x})))
22 eliun 3974 . . . . 5 (y x C ((B “ {x}) × (A “ {x})) ↔ x C y ((B “ {x}) × (A “ {x})))
23 df-rex 2621 . . . . 5 (x C y ((B “ {x}) × (A “ {x})) ↔ x(x C y ((B “ {x}) × (A “ {x}))))
2422, 23bitri 240 . . . 4 (y x C ((B “ {x}) × (A “ {x})) ↔ x(x C y ((B “ {x}) × (A “ {x}))))
2518, 21, 243bitr4g 279 . . 3 ((dom A ∩ ran B) C → (y x V ((B “ {x}) × (A “ {x})) ↔ y x C ((B “ {x}) × (A “ {x}))))
2625eqrdv 2351 . 2 ((dom A ∩ ran B) Cx V ((B “ {x}) × (A “ {x})) = x C ((B “ {x}) × (A “ {x})))
271, 26syl5eq 2397 1 ((dom A ∩ ran B) C → (A B) = x C ((B “ {x}) × (A “ {x})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  wex 1541   = wceq 1642   wcel 1710  wrex 2616  Vcvv 2860  cin 3209   wss 3258  {csn 3738  ciun 3970  cop 4562   class class class wbr 4640   ccom 4722  cima 4723   × cxp 4771  ccnv 4772  dom cdm 4773  ran crn 4774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-iun 3972  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-co 4727  df-ima 4728  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator