NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  prnzg GIF version

Theorem prnzg 3837
Description: A pair containing a set is not empty. (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
prnzg (A V → {A, B} ≠ )

Proof of Theorem prnzg
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 preq1 3800 . . 3 (x = A → {x, B} = {A, B})
21neeq1d 2530 . 2 (x = A → ({x, B} ≠ ↔ {A, B} ≠ ))
3 vex 2863 . . 3 x V
43prnz 3836 . 2 {x, B} ≠
52, 4vtoclg 2915 1 (A V → {A, B} ≠ )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642   wcel 1710  wne 2517  c0 3551  {cpr 3739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-nul 3552  df-sn 3742  df-pr 3743
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator