| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > tpnz | GIF version | ||
| Description: A triplet containing a set is not empty. (Contributed by NM, 10-Apr-1994.) |
| Ref | Expression |
|---|---|
| tpnz.1 | ⊢ A ∈ V |
| Ref | Expression |
|---|---|
| tpnz | ⊢ {A, B, C} ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpnz.1 | . . 3 ⊢ A ∈ V | |
| 2 | 1 | tpid1 3830 | . 2 ⊢ A ∈ {A, B, C} |
| 3 | ne0i 3557 | . 2 ⊢ (A ∈ {A, B, C} → {A, B, C} ≠ ∅) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ {A, B, C} ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 1710 ≠ wne 2517 Vcvv 2860 ∅c0 3551 {ctp 3740 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-nul 3552 df-sn 3742 df-pr 3743 df-tp 3744 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |