NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  prprc1 GIF version

Theorem prprc1 4124
Description: An unordered pair of a proper class. (Contributed by SF, 12-Jan-2015.)
Assertion
Ref Expression
prprc1 A V → {A, B} = {B})

Proof of Theorem prprc1
StepHypRef Expression
1 prcom 3799 . 2 {A, B} = {B, A}
2 prprc2 4123 . 2 A V → {B, A} = {B})
31, 2syl5eq 2397 1 A V → {A, B} = {B})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1642   wcel 1710  Vcvv 2860  {csn 3738  {cpr 3739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-nul 3552  df-sn 3742  df-pr 3743
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator