![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > prprc1 | GIF version |
Description: An unordered pair of a proper class. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
prprc1 | ⊢ (¬ A ∈ V → {A, B} = {B}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcom 3798 | . 2 ⊢ {A, B} = {B, A} | |
2 | prprc2 4122 | . 2 ⊢ (¬ A ∈ V → {B, A} = {B}) | |
3 | 1, 2 | syl5eq 2397 | 1 ⊢ (¬ A ∈ V → {A, B} = {B}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1642 ∈ wcel 1710 Vcvv 2859 {csn 3737 {cpr 3738 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-nul 3551 df-sn 3741 df-pr 3742 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |