New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > prprc2 | GIF version |
Description: An unordered pair of a proper class. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
prprc2 | ⊢ (¬ A ∈ V → {B, A} = {B}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 3743 | . 2 ⊢ {B, A} = ({B} ∪ {A}) | |
2 | snprc 3789 | . . . . 5 ⊢ (¬ A ∈ V ↔ {A} = ∅) | |
3 | 2 | biimpi 186 | . . . 4 ⊢ (¬ A ∈ V → {A} = ∅) |
4 | 3 | uneq2d 3419 | . . 3 ⊢ (¬ A ∈ V → ({B} ∪ {A}) = ({B} ∪ ∅)) |
5 | un0 3576 | . . 3 ⊢ ({B} ∪ ∅) = {B} | |
6 | 4, 5 | syl6eq 2401 | . 2 ⊢ (¬ A ∈ V → ({B} ∪ {A}) = {B}) |
7 | 1, 6 | syl5eq 2397 | 1 ⊢ (¬ A ∈ V → {B, A} = {B}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1642 ∈ wcel 1710 Vcvv 2860 ∪ cun 3208 ∅c0 3551 {csn 3738 {cpr 3739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-nul 3552 df-sn 3742 df-pr 3743 |
This theorem is referenced by: prprc1 4124 |
Copyright terms: Public domain | W3C validator |