New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > prssg | GIF version |
Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 22-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
prssg | ⊢ ((A ∈ V ∧ B ∈ W) → ((A ∈ C ∧ B ∈ C) ↔ {A, B} ⊆ C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssg 3845 | . . 3 ⊢ (A ∈ V → (A ∈ C ↔ {A} ⊆ C)) | |
2 | snssg 3845 | . . 3 ⊢ (B ∈ W → (B ∈ C ↔ {B} ⊆ C)) | |
3 | 1, 2 | bi2anan9 843 | . 2 ⊢ ((A ∈ V ∧ B ∈ W) → ((A ∈ C ∧ B ∈ C) ↔ ({A} ⊆ C ∧ {B} ⊆ C))) |
4 | unss 3438 | . . 3 ⊢ (({A} ⊆ C ∧ {B} ⊆ C) ↔ ({A} ∪ {B}) ⊆ C) | |
5 | df-pr 3743 | . . . 4 ⊢ {A, B} = ({A} ∪ {B}) | |
6 | 5 | sseq1i 3296 | . . 3 ⊢ ({A, B} ⊆ C ↔ ({A} ∪ {B}) ⊆ C) |
7 | 4, 6 | bitr4i 243 | . 2 ⊢ (({A} ⊆ C ∧ {B} ⊆ C) ↔ {A, B} ⊆ C) |
8 | 3, 7 | syl6bb 252 | 1 ⊢ ((A ∈ V ∧ B ∈ W) → ((A ∈ C ∧ B ∈ C) ↔ {A, B} ⊆ C)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∈ wcel 1710 ∪ cun 3208 ⊆ wss 3258 {csn 3738 {cpr 3739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-ss 3260 df-sn 3742 df-pr 3743 |
This theorem is referenced by: prssi 3864 |
Copyright terms: Public domain | W3C validator |