NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  prssg GIF version

Theorem prssg 3863
Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 22-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
prssg ((A V B W) → ((A C B C) ↔ {A, B} C))

Proof of Theorem prssg
StepHypRef Expression
1 snssg 3845 . . 3 (A V → (A C ↔ {A} C))
2 snssg 3845 . . 3 (B W → (B C ↔ {B} C))
31, 2bi2anan9 843 . 2 ((A V B W) → ((A C B C) ↔ ({A} C {B} C)))
4 unss 3438 . . 3 (({A} C {B} C) ↔ ({A} ∪ {B}) C)
5 df-pr 3743 . . . 4 {A, B} = ({A} ∪ {B})
65sseq1i 3296 . . 3 ({A, B} C ↔ ({A} ∪ {B}) C)
74, 6bitr4i 243 . 2 (({A} C {B} C) ↔ {A, B} C)
83, 7syl6bb 252 1 ((A V B W) → ((A C B C) ↔ {A, B} C))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   wcel 1710  cun 3208   wss 3258  {csn 3738  {cpr 3739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-ss 3260  df-sn 3742  df-pr 3743
This theorem is referenced by:  prssi  3864
  Copyright terms: Public domain W3C validator