| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > prss | GIF version | ||
| Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| prss.1 | ⊢ A ∈ V | 
| prss.2 | ⊢ B ∈ V | 
| Ref | Expression | 
|---|---|
| prss | ⊢ ((A ∈ C ∧ B ∈ C) ↔ {A, B} ⊆ C) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | unss 3438 | . 2 ⊢ (({A} ⊆ C ∧ {B} ⊆ C) ↔ ({A} ∪ {B}) ⊆ C) | |
| 2 | prss.1 | . . . 4 ⊢ A ∈ V | |
| 3 | 2 | snss 3839 | . . 3 ⊢ (A ∈ C ↔ {A} ⊆ C) | 
| 4 | prss.2 | . . . 4 ⊢ B ∈ V | |
| 5 | 4 | snss 3839 | . . 3 ⊢ (B ∈ C ↔ {B} ⊆ C) | 
| 6 | 3, 5 | anbi12i 678 | . 2 ⊢ ((A ∈ C ∧ B ∈ C) ↔ ({A} ⊆ C ∧ {B} ⊆ C)) | 
| 7 | df-pr 3743 | . . 3 ⊢ {A, B} = ({A} ∪ {B}) | |
| 8 | 7 | sseq1i 3296 | . 2 ⊢ ({A, B} ⊆ C ↔ ({A} ∪ {B}) ⊆ C) | 
| 9 | 1, 6, 8 | 3bitr4i 268 | 1 ⊢ ((A ∈ C ∧ B ∈ C) ↔ {A, B} ⊆ C) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 176 ∧ wa 358 ∈ wcel 1710 Vcvv 2860 ∪ cun 3208 ⊆ wss 3258 {csn 3738 {cpr 3739 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-ss 3260 df-sn 3742 df-pr 3743 | 
| This theorem is referenced by: tpss 3872 prsspw 3879 uniintsn 3964 | 
| Copyright terms: Public domain | W3C validator |