NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rexsns GIF version

Theorem rexsns 3765
Description: Restricted existential quantification over a singleton. (Contributed by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
rexsns (A V → (x {A}φ ↔ [̣A / xφ))
Distinct variable group:   x,A
Allowed substitution hints:   φ(x)   V(x)

Proof of Theorem rexsns
StepHypRef Expression
1 sbc5 3071 . . 3 ([̣A / xφx(x = A φ))
21a1i 10 . 2 (A V → ([̣A / xφx(x = A φ)))
3 df-rex 2621 . . 3 (x {A}φx(x {A} φ))
4 elsn 3749 . . . . 5 (x {A} ↔ x = A)
54anbi1i 676 . . . 4 ((x {A} φ) ↔ (x = A φ))
65exbii 1582 . . 3 (x(x {A} φ) ↔ x(x = A φ))
73, 6bitri 240 . 2 (x {A}φx(x = A φ))
82, 7syl6rbbr 255 1 (A V → (x {A}φ ↔ [̣A / xφ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358  wex 1541   = wceq 1642   wcel 1710  wrex 2616  wsbc 3047  {csn 3738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621  df-v 2862  df-sbc 3048  df-sn 3742
This theorem is referenced by:  rexsng  3767  r19.12sn  3790
  Copyright terms: Public domain W3C validator