New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rexsns | GIF version |
Description: Restricted existential quantification over a singleton. (Contributed by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
rexsns | ⊢ (A ∈ V → (∃x ∈ {A}φ ↔ [̣A / x]̣φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbc5 3071 | . . 3 ⊢ ([̣A / x]̣φ ↔ ∃x(x = A ∧ φ)) | |
2 | 1 | a1i 10 | . 2 ⊢ (A ∈ V → ([̣A / x]̣φ ↔ ∃x(x = A ∧ φ))) |
3 | df-rex 2621 | . . 3 ⊢ (∃x ∈ {A}φ ↔ ∃x(x ∈ {A} ∧ φ)) | |
4 | elsn 3749 | . . . . 5 ⊢ (x ∈ {A} ↔ x = A) | |
5 | 4 | anbi1i 676 | . . . 4 ⊢ ((x ∈ {A} ∧ φ) ↔ (x = A ∧ φ)) |
6 | 5 | exbii 1582 | . . 3 ⊢ (∃x(x ∈ {A} ∧ φ) ↔ ∃x(x = A ∧ φ)) |
7 | 3, 6 | bitri 240 | . 2 ⊢ (∃x ∈ {A}φ ↔ ∃x(x = A ∧ φ)) |
8 | 2, 7 | syl6rbbr 255 | 1 ⊢ (A ∈ V → (∃x ∈ {A}φ ↔ [̣A / x]̣φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 [̣wsbc 3047 {csn 3738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-v 2862 df-sbc 3048 df-sn 3742 |
This theorem is referenced by: rexsng 3767 r19.12sn 3790 |
Copyright terms: Public domain | W3C validator |