New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > r19.36zv | GIF version |
Description: Restricted quantifier version of Theorem 19.36 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 20-Sep-2003.) |
Ref | Expression |
---|---|
r19.36zv | ⊢ (A ≠ ∅ → (∃x ∈ A (φ → ψ) ↔ (∀x ∈ A φ → ψ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.9rzv 3645 | . . 3 ⊢ (A ≠ ∅ → (ψ ↔ ∃x ∈ A ψ)) | |
2 | 1 | imbi2d 307 | . 2 ⊢ (A ≠ ∅ → ((∀x ∈ A φ → ψ) ↔ (∀x ∈ A φ → ∃x ∈ A ψ))) |
3 | r19.35 2759 | . 2 ⊢ (∃x ∈ A (φ → ψ) ↔ (∀x ∈ A φ → ∃x ∈ A ψ)) | |
4 | 2, 3 | syl6rbbr 255 | 1 ⊢ (A ≠ ∅ → (∃x ∈ A (φ → ψ) ↔ (∀x ∈ A φ → ψ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ≠ wne 2517 ∀wral 2615 ∃wrex 2616 ∅c0 3551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-nul 3552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |