NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  r19.3rzv GIF version

Theorem r19.3rzv 3644
Description: Restricted quantification of wff not containing quantified variable. (Contributed by NM, 10-Mar-1997.)
Assertion
Ref Expression
r19.3rzv (A → (φx A φ))
Distinct variable groups:   x,A   φ,x

Proof of Theorem r19.3rzv
StepHypRef Expression
1 n0 3560 . . 3 (Ax x A)
2 biimt 325 . . 3 (x x A → (φ ↔ (x x Aφ)))
31, 2sylbi 187 . 2 (A → (φ ↔ (x x Aφ)))
4 df-ral 2620 . . 3 (x A φx(x Aφ))
5 19.23v 1891 . . 3 (x(x Aφ) ↔ (x x Aφ))
64, 5bitri 240 . 2 (x A φ ↔ (x x Aφ))
73, 6syl6bbr 254 1 (A → (φx A φ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wal 1540  wex 1541   wcel 1710  wne 2517  wral 2615  c0 3551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-nul 3552
This theorem is referenced by:  r19.9rzv  3645  r19.28zv  3646  r19.37zv  3647  r19.27zv  3650  iinconst  3979
  Copyright terms: Public domain W3C validator