New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > r2al | GIF version |
Description: Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.) |
Ref | Expression |
---|---|
r2al | ⊢ (∀x ∈ A ∀y ∈ B φ ↔ ∀x∀y((x ∈ A ∧ y ∈ B) → φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2490 | . 2 ⊢ ℲyA | |
2 | 1 | r2alf 2650 | 1 ⊢ (∀x ∈ A ∀y ∈ B φ ↔ ∀x∀y((x ∈ A ∧ y ∈ B) → φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∈ wcel 1710 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 |
This theorem is referenced by: r3al 2672 raliunxp 4824 fununi 5161 dff13 5472 |
Copyright terms: Public domain | W3C validator |