New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqeq2i | GIF version |
Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeq2i.1 | ⊢ A = B |
Ref | Expression |
---|---|
eqeq2i | ⊢ (C = A ↔ C = B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2i.1 | . 2 ⊢ A = B | |
2 | eqeq2 2362 | . 2 ⊢ (A = B → (C = A ↔ C = B)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (C = A ↔ C = B) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 = wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: eqtri 2373 rabid2 2789 equncom 3410 ssunpr 3869 sspr 3870 sstp 3871 axprimlem2 4090 preq12b 4128 1cex 4143 dfeu2 4334 dfiota2 4341 dfnnc2 4396 addcid1 4406 addccom 4407 nnc0suc 4413 addcass 4416 nncaddccl 4420 nnsucelrlem1 4425 nndisjeq 4430 preaddccan2lem1 4455 lefinlteq 4464 ltfinex 4465 ltfintri 4467 ltlefin 4469 eqpwrelk 4479 eqtfinrelk 4487 evenodddisjlem1 4516 evenodddisj 4517 srelk 4525 dfphi2 4570 dfop2lem1 4574 dfop2 4576 dfproj12 4577 phialllem1 4617 setconslem1 4732 setconslem2 4733 dfswap2 4742 fnressn 5439 fressnfv 5440 fnov 5592 dffn5v 5707 fnov2 5708 eqerlem 5961 qsid 5991 mapexi 6004 enex 6032 elncs 6120 tcdi 6165 ovcelem1 6172 ceex 6175 nc0suc 6218 muc0or 6253 lecadd2 6267 nnc3p1n3p2 6281 nchoicelem2 6291 nchoicelem17 6306 |
Copyright terms: Public domain | W3C validator |