New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elab | GIF version |
Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
elab.1 | ⊢ A ∈ V |
elab.2 | ⊢ (x = A → (φ ↔ ψ)) |
Ref | Expression |
---|---|
elab | ⊢ (A ∈ {x ∣ φ} ↔ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . 2 ⊢ Ⅎxψ | |
2 | elab.1 | . 2 ⊢ A ∈ V | |
3 | elab.2 | . 2 ⊢ (x = A → (φ ↔ ψ)) | |
4 | 1, 2, 3 | elabf 2984 | 1 ⊢ (A ∈ {x ∣ φ} ↔ ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ∈ wcel 1710 {cab 2339 Vcvv 2859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 |
This theorem is referenced by: ralab 2997 rexab 2999 intab 3956 dfiin2g 4000 pwadjoin 4119 dfnnc2 4395 findsd 4410 nnadjoinlem1 4519 tfinnn 4534 vfinncvntsp 4549 vfinspss 4551 vfinspclt 4552 proj1op 4600 proj2op 4601 funcnvuni 5161 fun11iun 5305 tz6.12-2 5346 fnasrn 5417 abrexco 5463 clos1is 5881 mapval2 6018 mucex 6133 ceex 6174 spacis 6288 |
Copyright terms: Public domain | W3C validator |