New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ssiinf | GIF version |
Description: Subset theorem for an indexed intersection. (Contributed by FL, 15-Oct-2012.) (Proof shortened by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
ssiinf.1 | ⊢ ℲxC |
Ref | Expression |
---|---|
ssiinf | ⊢ (C ⊆ ∩x ∈ A B ↔ ∀x ∈ A C ⊆ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2863 | . . . . 5 ⊢ y ∈ V | |
2 | eliin 3975 | . . . . 5 ⊢ (y ∈ V → (y ∈ ∩x ∈ A B ↔ ∀x ∈ A y ∈ B)) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (y ∈ ∩x ∈ A B ↔ ∀x ∈ A y ∈ B) |
4 | 3 | ralbii 2639 | . . 3 ⊢ (∀y ∈ C y ∈ ∩x ∈ A B ↔ ∀y ∈ C ∀x ∈ A y ∈ B) |
5 | ssiinf.1 | . . . 4 ⊢ ℲxC | |
6 | nfcv 2490 | . . . 4 ⊢ ℲyA | |
7 | 5, 6 | ralcomf 2770 | . . 3 ⊢ (∀y ∈ C ∀x ∈ A y ∈ B ↔ ∀x ∈ A ∀y ∈ C y ∈ B) |
8 | 4, 7 | bitri 240 | . 2 ⊢ (∀y ∈ C y ∈ ∩x ∈ A B ↔ ∀x ∈ A ∀y ∈ C y ∈ B) |
9 | dfss3 3264 | . 2 ⊢ (C ⊆ ∩x ∈ A B ↔ ∀y ∈ C y ∈ ∩x ∈ A B) | |
10 | dfss3 3264 | . . 3 ⊢ (C ⊆ B ↔ ∀y ∈ C y ∈ B) | |
11 | 10 | ralbii 2639 | . 2 ⊢ (∀x ∈ A C ⊆ B ↔ ∀x ∈ A ∀y ∈ C y ∈ B) |
12 | 8, 9, 11 | 3bitr4i 268 | 1 ⊢ (C ⊆ ∩x ∈ A B ↔ ∀x ∈ A C ⊆ B) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∈ wcel 1710 Ⅎwnfc 2477 ∀wral 2615 Vcvv 2860 ⊆ wss 3258 ∩ciin 3971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-iin 3973 |
This theorem is referenced by: ssiin 4017 dmiin 4966 |
Copyright terms: Public domain | W3C validator |