NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  caovdirg GIF version

Theorem caovdirg 5634
Description: Convert an operation reverse distributive law to class notation. (Contributed by set.mm contributors, 19-Oct-2014.)
Hypothesis
Ref Expression
caovdirg.1 ((φ (x S y S z S)) → ((xFy)Gz) = ((xGz)F(yGz)))
Assertion
Ref Expression
caovdirg ((φ (A S B S C S)) → ((AFB)GC) = ((AGC)F(BGC)))
Distinct variable groups:   x,y,z,F   x,S,y,z   x,A,y,z   x,B,y,z   x,C,y,z   x,G,y,z   φ,x,y,z

Proof of Theorem caovdirg
StepHypRef Expression
1 caovdirg.1 . . 3 ((φ (x S y S z S)) → ((xFy)Gz) = ((xGz)F(yGz)))
21ralrimivvva 2708 . 2 (φx S y S z S ((xFy)Gz) = ((xGz)F(yGz)))
3 oveq1 5531 . . . . 5 (x = A → (xFy) = (AFy))
43oveq1d 5538 . . . 4 (x = A → ((xFy)Gz) = ((AFy)Gz))
5 oveq1 5531 . . . . 5 (x = A → (xGz) = (AGz))
65oveq1d 5538 . . . 4 (x = A → ((xGz)F(yGz)) = ((AGz)F(yGz)))
74, 6eqeq12d 2367 . . 3 (x = A → (((xFy)Gz) = ((xGz)F(yGz)) ↔ ((AFy)Gz) = ((AGz)F(yGz))))
8 oveq2 5532 . . . . 5 (y = B → (AFy) = (AFB))
98oveq1d 5538 . . . 4 (y = B → ((AFy)Gz) = ((AFB)Gz))
10 oveq1 5531 . . . . 5 (y = B → (yGz) = (BGz))
1110oveq2d 5539 . . . 4 (y = B → ((AGz)F(yGz)) = ((AGz)F(BGz)))
129, 11eqeq12d 2367 . . 3 (y = B → (((AFy)Gz) = ((AGz)F(yGz)) ↔ ((AFB)Gz) = ((AGz)F(BGz))))
13 oveq2 5532 . . . 4 (z = C → ((AFB)Gz) = ((AFB)GC))
14 oveq2 5532 . . . . 5 (z = C → (AGz) = (AGC))
15 oveq2 5532 . . . . 5 (z = C → (BGz) = (BGC))
1614, 15oveq12d 5541 . . . 4 (z = C → ((AGz)F(BGz)) = ((AGC)F(BGC)))
1713, 16eqeq12d 2367 . . 3 (z = C → (((AFB)Gz) = ((AGz)F(BGz)) ↔ ((AFB)GC) = ((AGC)F(BGC))))
187, 12, 17rspc3v 2965 . 2 ((A S B S C S) → (x S y S z S ((xFy)Gz) = ((xGz)F(yGz)) → ((AFB)GC) = ((AGC)F(BGC))))
192, 18mpan9 455 1 ((φ (A S B S C S)) → ((AFB)GC) = ((AGC)F(BGC)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934   = wceq 1642   wcel 1710  wral 2615  (class class class)co 5526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-addc 4379  df-nnc 4380  df-phi 4566  df-op 4567  df-br 4641  df-fv 4796  df-ov 5527
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator