New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > caovdirg | GIF version |
Description: Convert an operation reverse distributive law to class notation. (Contributed by set.mm contributors, 19-Oct-2014.) |
Ref | Expression |
---|---|
caovdirg.1 | ⊢ ((φ ∧ (x ∈ S ∧ y ∈ S ∧ z ∈ S)) → ((xFy)Gz) = ((xGz)F(yGz))) |
Ref | Expression |
---|---|
caovdirg | ⊢ ((φ ∧ (A ∈ S ∧ B ∈ S ∧ C ∈ S)) → ((AFB)GC) = ((AGC)F(BGC))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovdirg.1 | . . 3 ⊢ ((φ ∧ (x ∈ S ∧ y ∈ S ∧ z ∈ S)) → ((xFy)Gz) = ((xGz)F(yGz))) | |
2 | 1 | ralrimivvva 2708 | . 2 ⊢ (φ → ∀x ∈ S ∀y ∈ S ∀z ∈ S ((xFy)Gz) = ((xGz)F(yGz))) |
3 | oveq1 5531 | . . . . 5 ⊢ (x = A → (xFy) = (AFy)) | |
4 | 3 | oveq1d 5538 | . . . 4 ⊢ (x = A → ((xFy)Gz) = ((AFy)Gz)) |
5 | oveq1 5531 | . . . . 5 ⊢ (x = A → (xGz) = (AGz)) | |
6 | 5 | oveq1d 5538 | . . . 4 ⊢ (x = A → ((xGz)F(yGz)) = ((AGz)F(yGz))) |
7 | 4, 6 | eqeq12d 2367 | . . 3 ⊢ (x = A → (((xFy)Gz) = ((xGz)F(yGz)) ↔ ((AFy)Gz) = ((AGz)F(yGz)))) |
8 | oveq2 5532 | . . . . 5 ⊢ (y = B → (AFy) = (AFB)) | |
9 | 8 | oveq1d 5538 | . . . 4 ⊢ (y = B → ((AFy)Gz) = ((AFB)Gz)) |
10 | oveq1 5531 | . . . . 5 ⊢ (y = B → (yGz) = (BGz)) | |
11 | 10 | oveq2d 5539 | . . . 4 ⊢ (y = B → ((AGz)F(yGz)) = ((AGz)F(BGz))) |
12 | 9, 11 | eqeq12d 2367 | . . 3 ⊢ (y = B → (((AFy)Gz) = ((AGz)F(yGz)) ↔ ((AFB)Gz) = ((AGz)F(BGz)))) |
13 | oveq2 5532 | . . . 4 ⊢ (z = C → ((AFB)Gz) = ((AFB)GC)) | |
14 | oveq2 5532 | . . . . 5 ⊢ (z = C → (AGz) = (AGC)) | |
15 | oveq2 5532 | . . . . 5 ⊢ (z = C → (BGz) = (BGC)) | |
16 | 14, 15 | oveq12d 5541 | . . . 4 ⊢ (z = C → ((AGz)F(BGz)) = ((AGC)F(BGC))) |
17 | 13, 16 | eqeq12d 2367 | . . 3 ⊢ (z = C → (((AFB)Gz) = ((AGz)F(BGz)) ↔ ((AFB)GC) = ((AGC)F(BGC)))) |
18 | 7, 12, 17 | rspc3v 2965 | . 2 ⊢ ((A ∈ S ∧ B ∈ S ∧ C ∈ S) → (∀x ∈ S ∀y ∈ S ∀z ∈ S ((xFy)Gz) = ((xGz)F(yGz)) → ((AFB)GC) = ((AGC)F(BGC)))) |
19 | 2, 18 | mpan9 455 | 1 ⊢ ((φ ∧ (A ∈ S ∧ B ∈ S ∧ C ∈ S)) → ((AFB)GC) = ((AGC)F(BGC))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 = wceq 1642 ∈ wcel 1710 ∀wral 2615 (class class class)co 5526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-br 4641 df-fv 4796 df-ov 5527 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |