NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  caovdig GIF version

Theorem caovdig 5633
Description: Convert an operation distributive law to class notation. (Contributed by set.mm contributors, 25-Aug-1995.) (Revised by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
caovdig.1 ((φ (x S y S z S)) → (xG(yFz)) = ((xGy)F(xGz)))
Assertion
Ref Expression
caovdig ((φ (A S B S C S)) → (AG(BFC)) = ((AGB)F(AGC)))
Distinct variable groups:   x,y,z,F   x,S,y,z   x,A,y,z   x,B,y,z   x,C,y,z   x,G,y,z   φ,x,y,z

Proof of Theorem caovdig
StepHypRef Expression
1 caovdig.1 . . 3 ((φ (x S y S z S)) → (xG(yFz)) = ((xGy)F(xGz)))
21ralrimivvva 2708 . 2 (φx S y S z S (xG(yFz)) = ((xGy)F(xGz)))
3 oveq1 5531 . . . 4 (x = A → (xG(yFz)) = (AG(yFz)))
4 oveq1 5531 . . . . 5 (x = A → (xGy) = (AGy))
5 oveq1 5531 . . . . 5 (x = A → (xGz) = (AGz))
64, 5oveq12d 5541 . . . 4 (x = A → ((xGy)F(xGz)) = ((AGy)F(AGz)))
73, 6eqeq12d 2367 . . 3 (x = A → ((xG(yFz)) = ((xGy)F(xGz)) ↔ (AG(yFz)) = ((AGy)F(AGz))))
8 oveq1 5531 . . . . 5 (y = B → (yFz) = (BFz))
98oveq2d 5539 . . . 4 (y = B → (AG(yFz)) = (AG(BFz)))
10 oveq2 5532 . . . . 5 (y = B → (AGy) = (AGB))
1110oveq1d 5538 . . . 4 (y = B → ((AGy)F(AGz)) = ((AGB)F(AGz)))
129, 11eqeq12d 2367 . . 3 (y = B → ((AG(yFz)) = ((AGy)F(AGz)) ↔ (AG(BFz)) = ((AGB)F(AGz))))
13 oveq2 5532 . . . . 5 (z = C → (BFz) = (BFC))
1413oveq2d 5539 . . . 4 (z = C → (AG(BFz)) = (AG(BFC)))
15 oveq2 5532 . . . . 5 (z = C → (AGz) = (AGC))
1615oveq2d 5539 . . . 4 (z = C → ((AGB)F(AGz)) = ((AGB)F(AGC)))
1714, 16eqeq12d 2367 . . 3 (z = C → ((AG(BFz)) = ((AGB)F(AGz)) ↔ (AG(BFC)) = ((AGB)F(AGC))))
187, 12, 17rspc3v 2965 . 2 ((A S B S C S) → (x S y S z S (xG(yFz)) = ((xGy)F(xGz)) → (AG(BFC)) = ((AGB)F(AGC))))
192, 18mpan9 455 1 ((φ (A S B S C S)) → (AG(BFC)) = ((AGB)F(AGC)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934   = wceq 1642   wcel 1710  wral 2615  (class class class)co 5526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-addc 4379  df-nnc 4380  df-phi 4566  df-op 4567  df-br 4641  df-fv 4796  df-ov 5527
This theorem is referenced by:  caovdi  5635
  Copyright terms: Public domain W3C validator