New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > reu4 | GIF version |
Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
rmo4.1 | ⊢ (x = y → (φ ↔ ψ)) |
Ref | Expression |
---|---|
reu4 | ⊢ (∃!x ∈ A φ ↔ (∃x ∈ A φ ∧ ∀x ∈ A ∀y ∈ A ((φ ∧ ψ) → x = y))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reu5 2825 | . 2 ⊢ (∃!x ∈ A φ ↔ (∃x ∈ A φ ∧ ∃*x ∈ A φ)) | |
2 | rmo4.1 | . . . 4 ⊢ (x = y → (φ ↔ ψ)) | |
3 | 2 | rmo4 3030 | . . 3 ⊢ (∃*x ∈ A φ ↔ ∀x ∈ A ∀y ∈ A ((φ ∧ ψ) → x = y)) |
4 | 3 | anbi2i 675 | . 2 ⊢ ((∃x ∈ A φ ∧ ∃*x ∈ A φ) ↔ (∃x ∈ A φ ∧ ∀x ∈ A ∀y ∈ A ((φ ∧ ψ) → x = y))) |
5 | 1, 4 | bitri 240 | 1 ⊢ (∃!x ∈ A φ ↔ (∃x ∈ A φ ∧ ∀x ∈ A ∀y ∈ A ((φ ∧ ψ) → x = y))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wral 2615 ∃wrex 2616 ∃!wreu 2617 ∃*wrmo 2618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-cleq 2346 df-clel 2349 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 |
This theorem is referenced by: reuind 3040 vfinnc 4472 nnpw1ex 4485 ncspw1eu 6160 |
Copyright terms: Public domain | W3C validator |