| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > reupick3 | GIF version | ||
| Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 19-Nov-2016.) |
| Ref | Expression |
|---|---|
| reupick3 | ⊢ ((∃!x ∈ A φ ∧ ∃x ∈ A (φ ∧ ψ) ∧ x ∈ A) → (φ → ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-reu 2622 | . . . 4 ⊢ (∃!x ∈ A φ ↔ ∃!x(x ∈ A ∧ φ)) | |
| 2 | df-rex 2621 | . . . . 5 ⊢ (∃x ∈ A (φ ∧ ψ) ↔ ∃x(x ∈ A ∧ (φ ∧ ψ))) | |
| 3 | anass 630 | . . . . . 6 ⊢ (((x ∈ A ∧ φ) ∧ ψ) ↔ (x ∈ A ∧ (φ ∧ ψ))) | |
| 4 | 3 | exbii 1582 | . . . . 5 ⊢ (∃x((x ∈ A ∧ φ) ∧ ψ) ↔ ∃x(x ∈ A ∧ (φ ∧ ψ))) |
| 5 | 2, 4 | bitr4i 243 | . . . 4 ⊢ (∃x ∈ A (φ ∧ ψ) ↔ ∃x((x ∈ A ∧ φ) ∧ ψ)) |
| 6 | eupick 2267 | . . . 4 ⊢ ((∃!x(x ∈ A ∧ φ) ∧ ∃x((x ∈ A ∧ φ) ∧ ψ)) → ((x ∈ A ∧ φ) → ψ)) | |
| 7 | 1, 5, 6 | syl2anb 465 | . . 3 ⊢ ((∃!x ∈ A φ ∧ ∃x ∈ A (φ ∧ ψ)) → ((x ∈ A ∧ φ) → ψ)) |
| 8 | 7 | exp3a 425 | . 2 ⊢ ((∃!x ∈ A φ ∧ ∃x ∈ A (φ ∧ ψ)) → (x ∈ A → (φ → ψ))) |
| 9 | 8 | 3impia 1148 | 1 ⊢ ((∃!x ∈ A φ ∧ ∃x ∈ A (φ ∧ ψ) ∧ x ∈ A) → (φ → ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 ∃wex 1541 ∈ wcel 1710 ∃!weu 2204 ∃wrex 2616 ∃!wreu 2617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-rex 2621 df-reu 2622 |
| This theorem is referenced by: reupick2 3542 |
| Copyright terms: Public domain | W3C validator |