| Step | Hyp | Ref
 | Expression | 
| 1 |   | nfra1 2665 | 
. . . . . 6
⊢ Ⅎx∀x ∈ A B ∈ C | 
| 2 |   | rsp 2675 | 
. . . . . . . 8
⊢ (∀x ∈ A B ∈ C → (x
∈ A
→ B ∈ C)) | 
| 3 |   | clel3g 2977 | 
. . . . . . . 8
⊢ (B ∈ C → (z
∈ B
↔ ∃y(y = B ∧ z ∈ y))) | 
| 4 | 2, 3 | syl6 29 | 
. . . . . . 7
⊢ (∀x ∈ A B ∈ C → (x
∈ A
→ (z ∈ B ↔
∃y(y = B ∧ z ∈ y)))) | 
| 5 | 4 | imp 418 | 
. . . . . 6
⊢ ((∀x ∈ A B ∈ C ∧ x ∈ A) → (z
∈ B
↔ ∃y(y = B ∧ z ∈ y))) | 
| 6 | 1, 5 | rexbida 2630 | 
. . . . 5
⊢ (∀x ∈ A B ∈ C → (∃x ∈ A z ∈ B ↔ ∃x ∈ A ∃y(y = B ∧ z ∈ y))) | 
| 7 |   | rexcom4 2879 | 
. . . . 5
⊢ (∃x ∈ A ∃y(y = B ∧ z ∈ y) ↔
∃y∃x ∈ A (y = B ∧ z ∈ y)) | 
| 8 | 6, 7 | syl6bb 252 | 
. . . 4
⊢ (∀x ∈ A B ∈ C → (∃x ∈ A z ∈ B ↔ ∃y∃x ∈ A (y = B ∧ z ∈ y))) | 
| 9 |   | r19.41v 2765 | 
. . . . . 6
⊢ (∃x ∈ A (y = B ∧ z ∈ y) ↔
(∃x
∈ A
y = B
∧ z ∈ y)) | 
| 10 | 9 | exbii 1582 | 
. . . . 5
⊢ (∃y∃x ∈ A (y = B ∧ z ∈ y) ↔
∃y(∃x ∈ A y = B ∧ z ∈ y)) | 
| 11 |   | exancom 1586 | 
. . . . 5
⊢ (∃y(∃x ∈ A y = B ∧ z ∈ y) ↔
∃y(z ∈ y ∧ ∃x ∈ A y = B)) | 
| 12 | 10, 11 | bitri 240 | 
. . . 4
⊢ (∃y∃x ∈ A (y = B ∧ z ∈ y) ↔
∃y(z ∈ y ∧ ∃x ∈ A y = B)) | 
| 13 | 8, 12 | syl6bb 252 | 
. . 3
⊢ (∀x ∈ A B ∈ C → (∃x ∈ A z ∈ B ↔ ∃y(z ∈ y ∧ ∃x ∈ A y = B))) | 
| 14 |   | eliun 3974 | 
. . 3
⊢ (z ∈ ∪x ∈ A B ↔ ∃x ∈ A z ∈ B) | 
| 15 |   | eluniab 3904 | 
. . 3
⊢ (z ∈ ∪{y ∣ ∃x ∈ A y = B} ↔ ∃y(z ∈ y ∧ ∃x ∈ A y = B)) | 
| 16 | 13, 14, 15 | 3bitr4g 279 | 
. 2
⊢ (∀x ∈ A B ∈ C → (z
∈ ∪x ∈ A B ↔
z ∈ ∪{y ∣ ∃x ∈ A y = B})) | 
| 17 | 16 | eqrdv 2351 | 
1
⊢ (∀x ∈ A B ∈ C → ∪x ∈ A B = ∪{y ∣ ∃x ∈ A y = B}) |