New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elsuci | GIF version |
Description: Lemma for ncfinraise 4481. Take a natural and a disjoint union and compute membership in the successor natural. (Contributed by SF, 22-Jan-2015.) |
Ref | Expression |
---|---|
elsuci.1 | ⊢ X ∈ V |
Ref | Expression |
---|---|
elsuci | ⊢ ((A ∈ N ∧ ¬ X ∈ A) → (A ∪ {X}) ∈ (N +c 1c)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsuci.1 | . . . . 5 ⊢ X ∈ V | |
2 | 1 | elcompl 3225 | . . . 4 ⊢ (X ∈ ∼ A ↔ ¬ X ∈ A) |
3 | eqid 2353 | . . . . 5 ⊢ (A ∪ {X}) = (A ∪ {X}) | |
4 | sneq 3744 | . . . . . . . 8 ⊢ (x = X → {x} = {X}) | |
5 | 4 | uneq2d 3418 | . . . . . . 7 ⊢ (x = X → (A ∪ {x}) = (A ∪ {X})) |
6 | 5 | eqeq2d 2364 | . . . . . 6 ⊢ (x = X → ((A ∪ {X}) = (A ∪ {x}) ↔ (A ∪ {X}) = (A ∪ {X}))) |
7 | 6 | rspcev 2955 | . . . . 5 ⊢ ((X ∈ ∼ A ∧ (A ∪ {X}) = (A ∪ {X})) → ∃x ∈ ∼ A(A ∪ {X}) = (A ∪ {x})) |
8 | 3, 7 | mpan2 652 | . . . 4 ⊢ (X ∈ ∼ A → ∃x ∈ ∼ A(A ∪ {X}) = (A ∪ {x})) |
9 | 2, 8 | sylbir 204 | . . 3 ⊢ (¬ X ∈ A → ∃x ∈ ∼ A(A ∪ {X}) = (A ∪ {x})) |
10 | compleq 3243 | . . . . 5 ⊢ (a = A → ∼ a = ∼ A) | |
11 | uneq1 3411 | . . . . . 6 ⊢ (a = A → (a ∪ {x}) = (A ∪ {x})) | |
12 | 11 | eqeq2d 2364 | . . . . 5 ⊢ (a = A → ((A ∪ {X}) = (a ∪ {x}) ↔ (A ∪ {X}) = (A ∪ {x}))) |
13 | 10, 12 | rexeqbidv 2820 | . . . 4 ⊢ (a = A → (∃x ∈ ∼ a(A ∪ {X}) = (a ∪ {x}) ↔ ∃x ∈ ∼ A(A ∪ {X}) = (A ∪ {x}))) |
14 | 13 | rspcev 2955 | . . 3 ⊢ ((A ∈ N ∧ ∃x ∈ ∼ A(A ∪ {X}) = (A ∪ {x})) → ∃a ∈ N ∃x ∈ ∼ a(A ∪ {X}) = (a ∪ {x})) |
15 | 9, 14 | sylan2 460 | . 2 ⊢ ((A ∈ N ∧ ¬ X ∈ A) → ∃a ∈ N ∃x ∈ ∼ a(A ∪ {X}) = (a ∪ {x})) |
16 | elsuc 4413 | . 2 ⊢ ((A ∪ {X}) ∈ (N +c 1c) ↔ ∃a ∈ N ∃x ∈ ∼ a(A ∪ {X}) = (a ∪ {x})) | |
17 | 15, 16 | sylibr 203 | 1 ⊢ ((A ∈ N ∧ ¬ X ∈ A) → (A ∪ {X}) ∈ (N +c 1c)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∃wrex 2615 Vcvv 2859 ∼ ccompl 3205 ∪ cun 3207 {csn 3737 1cc1c 4134 +c cplc 4375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-ss 3259 df-nul 3551 df-sn 3741 df-1c 4136 df-addc 4378 |
This theorem is referenced by: prepeano4 4451 ncfinraise 4481 ncfinlower 4483 tfinsuc 4498 nnadjoin 4520 sfindbl 4530 tfinnn 4534 nulnnn 4556 |
Copyright terms: Public domain | W3C validator |