New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  rexlimiva GIF version

Theorem rexlimiva 2733
 Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Dec-2006.)
Hypothesis
Ref Expression
rexlimiva.1 ((x A φ) → ψ)
Assertion
Ref Expression
rexlimiva (x A φψ)
Distinct variable group:   ψ,x
Allowed substitution hints:   φ(x)   A(x)

Proof of Theorem rexlimiva
StepHypRef Expression
1 rexlimiva.1 . . 3 ((x A φ) → ψ)
21ex 423 . 2 (x A → (φψ))
32rexlimiv 2732 1 (x A φψ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 358   ∈ wcel 1710  ∃wrex 2615 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746 This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-nf 1545  df-ral 2619  df-rex 2620 This theorem is referenced by:  lefinlteq  4463  ltlefin  4468  ncfinraise  4481  clos1basesuc  5882  pw1fin  6169  dflec3  6221
 Copyright terms: Public domain W3C validator