NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rexlimiva GIF version

Theorem rexlimiva 2734
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Dec-2006.)
Hypothesis
Ref Expression
rexlimiva.1 ((x A φ) → ψ)
Assertion
Ref Expression
rexlimiva (x A φψ)
Distinct variable group:   ψ,x
Allowed substitution hints:   φ(x)   A(x)

Proof of Theorem rexlimiva
StepHypRef Expression
1 rexlimiva.1 . . 3 ((x A φ) → ψ)
21ex 423 . 2 (x A → (φψ))
32rexlimiv 2733 1 (x A φψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   wcel 1710  wrex 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-nf 1545  df-ral 2620  df-rex 2621
This theorem is referenced by:  lefinlteq  4464  ltlefin  4469  ncfinraise  4482  clos1basesuc  5883  pw1fin  6170  dflec3  6222
  Copyright terms: Public domain W3C validator