New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rexlimiva | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Dec-2006.) |
Ref | Expression |
---|---|
rexlimiva.1 | ⊢ ((x ∈ A ∧ φ) → ψ) |
Ref | Expression |
---|---|
rexlimiva | ⊢ (∃x ∈ A φ → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimiva.1 | . . 3 ⊢ ((x ∈ A ∧ φ) → ψ) | |
2 | 1 | ex 423 | . 2 ⊢ (x ∈ A → (φ → ψ)) |
3 | 2 | rexlimiv 2733 | 1 ⊢ (∃x ∈ A φ → ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∈ wcel 1710 ∃wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-ral 2620 df-rex 2621 |
This theorem is referenced by: lefinlteq 4464 ltlefin 4469 ncfinraise 4482 clos1basesuc 5883 pw1fin 6170 dflec3 6222 |
Copyright terms: Public domain | W3C validator |