Step | Hyp | Ref
| Expression |
1 | | clos1basesuc.1 |
. . 3
⊢ S ∈
V |
2 | | clos1basesuc.2 |
. . 3
⊢ R ∈
V |
3 | | clos1basesuc.3 |
. . 3
⊢ C = Clos1 (S, R) |
4 | | abid2 2471 |
. . . . . . 7
⊢ {y ∣ y ∈ S} = S |
5 | 4 | eqcomi 2357 |
. . . . . 6
⊢ S = {y ∣ y ∈ S} |
6 | | df-ima 4728 |
. . . . . 6
⊢ (R “ C) =
{y ∣
∃x ∈ C xRy} |
7 | 5, 6 | uneq12i 3417 |
. . . . 5
⊢ (S ∪ (R
“ C)) = ({y ∣ y ∈ S} ∪ {y
∣ ∃x ∈ C xRy}) |
8 | | unab 3522 |
. . . . 5
⊢ ({y ∣ y ∈ S} ∪ {y
∣ ∃x ∈ C xRy}) = {y ∣ (y ∈ S ∨ ∃x ∈ C xRy)} |
9 | 7, 8 | eqtri 2373 |
. . . 4
⊢ (S ∪ (R
“ C)) = {y ∣ (y ∈ S ∨ ∃x ∈ C xRy)} |
10 | 1, 2 | clos1ex 5877 |
. . . . . . 7
⊢ Clos1 (S, R) ∈
V |
11 | 3, 10 | eqeltri 2423 |
. . . . . 6
⊢ C ∈
V |
12 | 2, 11 | imaex 4748 |
. . . . 5
⊢ (R “ C)
∈ V |
13 | 1, 12 | unex 4107 |
. . . 4
⊢ (S ∪ (R
“ C)) ∈ V |
14 | 9, 13 | eqeltrri 2424 |
. . 3
⊢ {y ∣ (y ∈ S ∨ ∃x ∈ C xRy)} ∈
V |
15 | | eleq1 2413 |
. . . 4
⊢ (y = z →
(y ∈
S ↔ z ∈ S)) |
16 | | breq2 4644 |
. . . . 5
⊢ (y = z →
(xRy ↔
xRz)) |
17 | 16 | rexbidv 2636 |
. . . 4
⊢ (y = z →
(∃x
∈ C
xRy ↔ ∃x ∈ C xRz)) |
18 | 15, 17 | orbi12d 690 |
. . 3
⊢ (y = z →
((y ∈
S ∨ ∃x ∈ C xRy) ↔ (z
∈ S ∨ ∃x ∈ C xRz))) |
19 | | eleq1 2413 |
. . . 4
⊢ (y = w →
(y ∈
S ↔ w ∈ S)) |
20 | | breq2 4644 |
. . . . 5
⊢ (y = w →
(xRy ↔
xRw)) |
21 | 20 | rexbidv 2636 |
. . . 4
⊢ (y = w →
(∃x
∈ C
xRy ↔ ∃x ∈ C xRw)) |
22 | 19, 21 | orbi12d 690 |
. . 3
⊢ (y = w →
((y ∈
S ∨ ∃x ∈ C xRy) ↔ (w
∈ S ∨ ∃x ∈ C xRw))) |
23 | | eleq1 2413 |
. . . 4
⊢ (y = A →
(y ∈
S ↔ A ∈ S)) |
24 | | breq2 4644 |
. . . . 5
⊢ (y = A →
(xRy ↔
xRA)) |
25 | 24 | rexbidv 2636 |
. . . 4
⊢ (y = A →
(∃x
∈ C
xRy ↔ ∃x ∈ C xRA)) |
26 | 23, 25 | orbi12d 690 |
. . 3
⊢ (y = A →
((y ∈
S ∨ ∃x ∈ C xRy) ↔ (A
∈ S ∨ ∃x ∈ C xRA))) |
27 | | orc 374 |
. . 3
⊢ (y ∈ S → (y
∈ S ∨ ∃x ∈ C xRy)) |
28 | 3 | clos1base 5879 |
. . . . . . . . . 10
⊢ S ⊆ C |
29 | 28 | sseli 3270 |
. . . . . . . . 9
⊢ (z ∈ S → z ∈ C) |
30 | | breq1 4643 |
. . . . . . . . . . 11
⊢ (y = z →
(yRw ↔
zRw)) |
31 | 30 | rspcev 2956 |
. . . . . . . . . 10
⊢ ((z ∈ C ∧ zRw) → ∃y ∈ C yRw) |
32 | 31 | ex 423 |
. . . . . . . . 9
⊢ (z ∈ C → (zRw → ∃y ∈ C yRw)) |
33 | 29, 32 | syl 15 |
. . . . . . . 8
⊢ (z ∈ S → (zRw → ∃y ∈ C yRw)) |
34 | 3 | clos1conn 5880 |
. . . . . . . . . 10
⊢ ((x ∈ C ∧ xRz) → z
∈ C) |
35 | 34, 32 | syl 15 |
. . . . . . . . 9
⊢ ((x ∈ C ∧ xRz) → (zRw → ∃y ∈ C yRw)) |
36 | 35 | rexlimiva 2734 |
. . . . . . . 8
⊢ (∃x ∈ C xRz → (zRw → ∃y ∈ C yRw)) |
37 | 33, 36 | jaoi 368 |
. . . . . . 7
⊢ ((z ∈ S ∨ ∃x ∈ C xRz) → (zRw → ∃y ∈ C yRw)) |
38 | 37 | impcom 419 |
. . . . . 6
⊢ ((zRw ∧ (z ∈ S ∨ ∃x ∈ C xRz)) → ∃y ∈ C yRw) |
39 | | breq1 4643 |
. . . . . . 7
⊢ (x = y →
(xRw ↔
yRw)) |
40 | 39 | cbvrexv 2837 |
. . . . . 6
⊢ (∃x ∈ C xRw ↔ ∃y ∈ C yRw) |
41 | 38, 40 | sylibr 203 |
. . . . 5
⊢ ((zRw ∧ (z ∈ S ∨ ∃x ∈ C xRz)) → ∃x ∈ C xRw) |
42 | 41 | olcd 382 |
. . . 4
⊢ ((zRw ∧ (z ∈ S ∨ ∃x ∈ C xRz)) → (w
∈ S ∨ ∃x ∈ C xRw)) |
43 | 42 | 3adant1 973 |
. . 3
⊢ ((z ∈ C ∧ zRw ∧ (z ∈ S ∨ ∃x ∈ C xRz)) → (w
∈ S ∨ ∃x ∈ C xRw)) |
44 | 1, 2, 3, 14, 18, 22, 26, 27, 43 | clos1is 5882 |
. 2
⊢ (A ∈ C → (A
∈ S ∨ ∃x ∈ C xRA)) |
45 | 28 | sseli 3270 |
. . 3
⊢ (A ∈ S → A ∈ C) |
46 | 3 | clos1conn 5880 |
. . . 4
⊢ ((x ∈ C ∧ xRA) → A
∈ C) |
47 | 46 | rexlimiva 2734 |
. . 3
⊢ (∃x ∈ C xRA → A ∈ C) |
48 | 45, 47 | jaoi 368 |
. 2
⊢ ((A ∈ S ∨ ∃x ∈ C xRA) → A
∈ C) |
49 | 44, 48 | impbii 180 |
1
⊢ (A ∈ C ↔ (A
∈ S ∨ ∃x ∈ C xRA)) |