| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > rspc | GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
| Ref | Expression |
|---|---|
| rspc.1 | ⊢ Ⅎxψ |
| rspc.2 | ⊢ (x = A → (φ ↔ ψ)) |
| Ref | Expression |
|---|---|
| rspc | ⊢ (A ∈ B → (∀x ∈ B φ → ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2620 | . 2 ⊢ (∀x ∈ B φ ↔ ∀x(x ∈ B → φ)) | |
| 2 | nfcv 2490 | . . . 4 ⊢ ℲxA | |
| 3 | nfv 1619 | . . . . 5 ⊢ Ⅎx A ∈ B | |
| 4 | rspc.1 | . . . . 5 ⊢ Ⅎxψ | |
| 5 | 3, 4 | nfim 1813 | . . . 4 ⊢ Ⅎx(A ∈ B → ψ) |
| 6 | eleq1 2413 | . . . . 5 ⊢ (x = A → (x ∈ B ↔ A ∈ B)) | |
| 7 | rspc.2 | . . . . 5 ⊢ (x = A → (φ ↔ ψ)) | |
| 8 | 6, 7 | imbi12d 311 | . . . 4 ⊢ (x = A → ((x ∈ B → φ) ↔ (A ∈ B → ψ))) |
| 9 | 2, 5, 8 | spcgf 2935 | . . 3 ⊢ (A ∈ B → (∀x(x ∈ B → φ) → (A ∈ B → ψ))) |
| 10 | 9 | pm2.43a 45 | . 2 ⊢ (A ∈ B → (∀x(x ∈ B → φ) → ψ)) |
| 11 | 1, 10 | syl5bi 208 | 1 ⊢ (A ∈ B → (∀x ∈ B φ → ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 ∀wral 2615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 |
| This theorem is referenced by: rspcv 2952 rspc2 2961 |
| Copyright terms: Public domain | W3C validator |