NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rspcv GIF version

Theorem rspcv 2952
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-May-1998.)
Hypothesis
Ref Expression
rspcv.1 (x = A → (φψ))
Assertion
Ref Expression
rspcv (A B → (x B φψ))
Distinct variable groups:   x,A   x,B   ψ,x
Allowed substitution hint:   φ(x)

Proof of Theorem rspcv
StepHypRef Expression
1 nfv 1619 . 2 xψ
2 rspcv.1 . 2 (x = A → (φψ))
31, 2rspc 2950 1 (A B → (x B φψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   = wceq 1642   wcel 1710  wral 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-v 2862
This theorem is referenced by:  rspccv  2953  rspcva  2954  rspccva  2955  rspc3v  2965  rr19.3v  2981  rr19.28v  2982  rspsbc  3125  intmin  3947  evenodddisj  4517  nnadjoin  4521  tfinnn  4535  spfinsfincl  4540  funcnvuni  5162  nnc3n3p1  6279  nchoicelem12  6301  nchoicelem19  6308
  Copyright terms: Public domain W3C validator