New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rspcv | GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) |
Ref | Expression |
---|---|
rspcv.1 | ⊢ (x = A → (φ ↔ ψ)) |
Ref | Expression |
---|---|
rspcv | ⊢ (A ∈ B → (∀x ∈ B φ → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . 2 ⊢ Ⅎxψ | |
2 | rspcv.1 | . 2 ⊢ (x = A → (φ ↔ ψ)) | |
3 | 1, 2 | rspc 2950 | 1 ⊢ (A ∈ B → (∀x ∈ B φ → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ∈ wcel 1710 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 |
This theorem is referenced by: rspccv 2953 rspcva 2954 rspccva 2955 rspc3v 2965 rr19.3v 2981 rr19.28v 2982 rspsbc 3125 intmin 3947 evenodddisj 4517 nnadjoin 4521 tfinnn 4535 spfinsfincl 4540 funcnvuni 5162 nnc3n3p1 6279 nchoicelem12 6301 nchoicelem19 6308 |
Copyright terms: Public domain | W3C validator |