New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm5.21nii | GIF version |
Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) |
Ref | Expression |
---|---|
pm5.21ni.1 | ⊢ (φ → ψ) |
pm5.21ni.2 | ⊢ (χ → ψ) |
pm5.21nii.3 | ⊢ (ψ → (φ ↔ χ)) |
Ref | Expression |
---|---|
pm5.21nii | ⊢ (φ ↔ χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21nii.3 | . 2 ⊢ (ψ → (φ ↔ χ)) | |
2 | pm5.21ni.1 | . . 3 ⊢ (φ → ψ) | |
3 | pm5.21ni.2 | . . 3 ⊢ (χ → ψ) | |
4 | 2, 3 | pm5.21ni 341 | . 2 ⊢ (¬ ψ → (φ ↔ χ)) |
5 | 1, 4 | pm2.61i 156 | 1 ⊢ (φ ↔ χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: elrabf 2994 sbcco 3069 sbc5 3071 sbcan 3089 sbcor 3091 sbcal 3094 sbcex2 3096 elin 3220 elun 3221 eluni 3895 eliun 3974 el1c 4140 elxpk 4197 eladdc 4399 elopab 4697 opelopabsb 4698 elima 4755 brsi 4762 epelc 4766 opeliunxp 4821 opeliunxp2 4823 br1st 4859 br2nd 4860 brswap2 4861 brco 4884 brcnv 4893 elimasn 5020 opbr1st 5502 opbr2nd 5503 brswap 5510 trtxp 5782 elfix 5788 otelins2 5792 otelins3 5793 oqelins4 5795 brfns 5834 qrpprod 5837 fnfullfunlem1 5857 bren 6031 enpw1 6063 brltc 6115 elncs 6120 elnc 6126 ncseqnc 6129 elcan 6330 elscan 6331 |
Copyright terms: Public domain | W3C validator |